The majority of development is performed on Linux operating systems (primarily Debian) so this is the most well tested platform, however Windows and Mac OS are also supported.
Any 64-bit Intel or AMD processor, or Apple Silicon Mac, should be able to run ngscopeclient. If AVX2 and/or AVX512F support is present ngscopeclient will use special optimized versions of some signal processing functions, however neither instruction set is required. Other (non Apple Silicon) ARM64 platforms may work if a compatible GPU is available, but have not been tested. 32-bit platforms are not supported due to the significant RAM requirements (but we won’t stop you from trying).
A mouse with scroll wheel, or touchpad with scroll gesture support, is mandatory to enable full use of the UI. We may explore alternative input methods for some UI elements in the future.
Any GPU with Vulkan support should be able to run ngscopeclient, however Vulkan 1.2 will deliver better performance. The minimum supported GPUs are:
The minimum RAM requirement to launch ngscopeclient is relatively small; however, actual memory consumption is heavily dependent on workload and can easily reach into the tens of gigabytes when doing complex analysis on many channels with deep history.
Typical RAM consumption examples:
Large amounts of GPU RAM are required for working with deep waveforms, especially if you intend to perform complex analysis on them. Analog waveforms are stored in 32-bit floating point format internally, so a single 256 megapoint waveform will consume 1GB of GPU memory. Intermediate results in multi-step filter pipelines require GPU memory as well, even if not displayed.
ngscopeclient uses the libscopehal library to communicate with instruments, so any libscopehal-compatible hardware should work with ngscopeclient. See the Oscilloscope Drivers section for more details on which hardware is supported and how to configure specific drivers.
ngscopeclient can be compiled on Linux, macOS, and Windows. While the compilation process is generally similar, various steps differ among platform and distro.
Basic requirements:
sudo apt-get install build-essential git cmake pkgconf libgtkmm-3.0-dev \ libcairomm-1.0-dev libsigc++-2.0-dev libyaml-cpp-dev catch2 libglfw3-dev curl xzip libhidapi-dev
On Debian bookworm and later, you can use system-provided Vulkan packages. Skip this on Debian bullseye, or if you choose to use the Vulkan SDK instead:
sudo apt-get install libvulkan-dev glslang-dev glslang-tools spirv-tools glslc
On Debian bullseye, you will need cmake from backports:
sudo bash -c 'echo "deb http://deb.debian.org/debian bullseye-backports main" >> \ /etc/apt/sources.list.d/bullseye-backports.list' sudo apt-get update sudo apt-get install cmake/bullseye-backports
To build the LXI component (needed if you have LXI- or VXI-11-based instruments):
sudo apt install liblxi-dev libtirpc-dev
For GPIB, you will need to install Linux-GPIB; instructions for this are out of scope here.
To build the documentation, you will also need LaTeX packages:
sudo apt install texlive texlive-fonts-extra texlive-extra-utils
Basic requirements:
sudo apt install build-essential git cmake pkgconf libgtkmm-3.0-dev \ libcairomm-1.0-dev libsigc++-2.0-dev libyaml-cpp-dev catch2 libglfw3-dev curl xzip libhidapi-dev
On Ubuntu 22.10 and earlier (including 20.04 and 22.04), you will need to use the Vulkan SDK. Instructions for installing this are in a later step. On Ubuntu 23.04 and later, you can instead use system-provided Vulkan packages:
sudo apt-get install libvulkan-dev glslang-dev glslang-tools spirv-tools glslc
To build the LXI component (needed if you have LXI- or VXI-11-based instruments):
sudo apt install liblxi-dev libtirpc-dev
For GPIB, you will need to install Linux-GPIB; instructions for this are out of scope here.
To build the documentation, you will also need LaTeX packages:
sudo apt install texlive texlive-fonts-extra texlive-extra-utils
Basic requirements:
sudo dnf install git gcc g++ cmake make pkgconf cairomm-devel gtk3-devel \ libsigc++30-devel yaml-cpp-devel catch-devel glfw-devel libhidapi-dev
System-provided Vulkan packages. Skip these if you choose to use the Vulkan SDK instead:
sudo dnf install vulkan-headers vulkan-loader-devel glslang-devel glslc \ libshaderc-devel spirv-tools-devel
To build the LXI component (needed if you have LXI- or VXI-11-based instruments):
sudo dnf install liblxi-devel libtirpc-devel
For GPIB, you will need to install Linux-GPIB; instructions for this are out of scope here.
To build the documentation, you will also need LaTeX packages:
sudo dnf install texlive
As Alpine Linux uses musl libc, you will need to use system-provided Vulkan packages, and not the Vulkan SDK.
apk add git gcc g++ cmake make pkgconf cairomm-dev gtk+3.0-dev libsigc++-dev \ yaml-cpp-dev catch2-3 vulkan-loader-dev glslang-dev glslang-static glfw-dev \ shaderc-dev spirv-tools-dev libhidapi-dev
If you are using an older stable release (such as CentOS 7), you may need to install some dependencies from source.
This installs the library into /usr/local. If you want to install it into a custom prefix, you will need to use CMAKE_INSTALL_PREFIX here and CMAKE_PREFIX_PATH when running cmake for scopehal-apps, which are out of scope for these instructions.
cd ~ git clone https://github.com/anthonix/ffts.git cd ffts mkdir build cd build cmake .. -DENABLE_SHARED=ON make -j4 sudo make install
In many cases, you can install the SDK components from distro-provided repositories, which is covered above. When possible, this is preferred over installing the Vulkan SDK. If you choose not to, or are running a Linux distro that does not provide these packages (for instance, Debian Bullseye, Ubuntu versions prior to 23.04, or other stable distros), the following instructions cover installing and loading the Vulkan SDK.
The latest tested SDK at the time of documentation update is version 1.3.275.0. Newer SDKs are supported, but breaking changes sometimes take place. If you are using a newer SDK and run into problems, please file a bug report.
If you are using Ubuntu 20.04 or 22.04, you may install the .deb packaged SDK release instead of following the instructions below. This may work for Debian as well but is not supported.
Alternatively, to use the tarball packaged SDK, download and unpack the tarball. You can manually download the SDK, or do the following:
cd ~ mkdir VulkanSDK cd VulkanSDK curl -LO 'https://vulkan.lunarg.com/sdk/download/1.3.275.0/linux/vulkansdk-linux-x86_64-1.3.275.0.tar.xz' tar xfv vulkansdk-linux-x86_64-1.3.275.0.tar.xz
And then source the ‘setup-env.sh‘ file:
source "$HOME/VulkanSDK/1.3.275.0/setup-env.sh"
When using the tarball-packaged SDK, you will need to source the ‘setup-env.sh‘ file any time you want to compile or run ngscopeclient. For convenience, you can add this to your ‘.bash_profile‘ or equivalent:
echo "source \"$HOME/VulkanSDK/1.3.275.0/setup-env.sh\"" >> ~/.bash_profile
cd ~ git clone --recursive https://github.com/ngscopeclient/scopehal-apps.git cd scopehal-apps mkdir build cd build cmake .. -DCMAKE_BUILD_TYPE=Release make -j4
You will need Xcode (either from the App Store or the Apple developer site); after installing, run it once for it to install system components. This provides gcc, g++, make, and similar required packages.
With Homebrew (brew.sh):
brew install pkg-config cairomm libsigc++ glfw cmake yaml-cpp glew catch2 libomp hidapi
brew install vulkan-headers vulkan-loader glslang shaderc spirv-tools molten-vk
Download and install the Vulkan SDK.. The latest tested SDK at the time of documentation update is version 1.3.275.0. Newer SDKs are supported, but breaking changes sometimes take place. If you are using a newer SDK and run into problems, please file a bug report.
And then source the ‘setup-env.sh‘ file:
source "$HOME/VulkanSDK/1.3.275.0/setup-env.sh"
When using the SDK, you will need to source the ‘setup-env.sh‘ file any time you want to compile or run ngscopeclient. For convenience, you can add this to your ‘.zprofile‘ or equivalent:
echo "source \"$HOME/VulkanSDK/1.3.275.0/setup-env.sh\"" >> ~/.zprofile
cd ~ git clone --recursive https://github.com/ngscopeclient/scopehal-apps.git cd scopehal-apps mkdir build cd build cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_PREFIX_PATH="$(brew --prefix);$(brew --prefix)/opt/libomp" make -j4
On Windows, we make use of the MSYS2 development environment, which gives us access to the MingGW-w64 toolchain. Since this toolchain allows ngscopeclient to be compiled as a native Windows application, the project might be run outside of MSYS2.
The following steps can be done in any MSYS-provided shell.
pacman -S git wget mingw-w64-ucrt-x86\_64-cmake mingw-w64-ucrt-x86\_64-toolchain
pacman -S mingw-w64-ucrt-x86\_64-libsigc++ mingw-w64-ucrt-x86\_64-cairomm mingw-w64-ucrt-x86\_64-yaml-cpp mingw-w64-ucrt-x86\_64-glfw mingw-w64-ucrt-x86\_64-catch mingw-w64-ucrt-x86\_64-hidapi
pacman -S mingw-w64-ucrt-x86\_64-vulkan-headers mingw-w64-ucrt-x86\_64-vulkan-loader mingw-w64-ucrt-x86\_64-shaderc \ mingw-w64-ucrt-x86\_64-glslang mingw-w64-ucrt-x86\_64-spirv-tools
pacman -S mingw-w64-ucrt-x86\_64-ffts
cd ~ git clone --recursive https://github.com/ngscopeclient/scopehal-apps
All following steps are to be done in a UCRT64 shell.
cd scopehal-apps mkdir build cd build cmake .. ninja -j4
Download and install WiX Toolset.
You can download it from https://github.com/wixtoolset/wix3/releases
If you install it to the path "C:\Program Files (x86)\WiX Toolset v3.14" run the following cmake
command instead of cmake .. mentioned earlier:
cmake .. -DWIXPATH="C:\Program Files (x86)\WiX Toolset v3.14\bin"
ninja compilation will now generate the installer after binaries.
At the moment, installation scripts are not yet complete. The binaries can be found in the build directory, such as ngscopeclient in $HOME/scopehal-apps/build/src/ngscopeclient.
When running ngscopeclient with no arguments, an empty session (Fig. 3.1) is created. To perform useful work, you can:
ngscopeclient takes standard liblogtools arguments for controlling console debug verbosity.
If no verbosity level is specified, the default is “notice" (3). (We suggest using --debug for routine use until the v1.0 release to aid in troubleshooting.)