ngscopeclient Operator Manual

Andrew D. Zonenberg

February 19, 2024

Copyright (©)2012-2024 Andrew D. Zonenberg and contributors. All rights reserved.

This document may be freely distributed and modified under the terms of the Creative Commons
Attribution-ShareAlike 3.0 Unported license (CC BY-SA 3.0).

Contents

1 Introduction

1.1 Introduction
1.2 Documentation Conventions
1.3 Key Concepts e
1.3.1 User Interface e
1.3.2 Design Philosophy
1.3.3 Terminology
1.4 Revision History

2 Legal Notices

2.1 Introduction
2.2 License Agreement e e
2.3 Trademarks
2.4 Third Party Licenses

2.4.1 avx_mathfun.h (zlib license) o oL

3 Getting Started

3.1 Host System Requirements L.
3.2 Instrument Support
3.3 Compilation e
3.3.1 Linux o e
3.3.2 macOS L
3.3.3 Windows oL
3.4 Running ngscopeclient L oo
3.4.1 Comnsole verbosity arguments oL

4 Main Window
4.1 Menu . .
4.1.1 File
4.1.2 View
4.1.3 Add
4.1.4 Setup

4.1.5 Window
4.1.6 Debug e
4.1.7 Help o
5 Dialogs
5.1 Lab Notes
5.2 Log Viewer
5.3 Performance Metrics L oo
5.3.1 Rendering e
5.3.2 Filter graph
5.3.3 Acquisition

13
13
13
14
14
14
14
16

17
17
17
18
18
18

19
19
20
20
20
22
23
24
25

27
27
27
28
28
29
29
30
30

10 Transports

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

gpib

null

twinlan

Memory

Appearance
Drivers
Files

Power

Markers

2
5.3.4
5.4 Preferences
5.4.1
5.4.2
5.4.3
5.4.4 Miscellaneous
5.4.5
5.5 Speed Bump
5.6 Timebase
6 Waveform Groups
6.1 Managing Groups
7 Waveform Views
7.1 Navigation
7.2 Plot Area
7.3 Y Axis Scale
7.4 Channel Label
7.5 Cursors and Markers
7.5.1 Vertical Cursors
7.5.2
8 History
8.1 Pinning
8.2 Labeling
9 Filter Graph Editor
9.1 Introduction
9.2 Interaction
9.3 Grouping

11 BERT Drivers

11.1

12 Function Generator Drivers
Rigol

12.1

MultiLANE
mlbert

11.1.1

12.1.1

rigol awg

13 Electronic Load Drivers

13.1

Siglent
siglent load

13.1.1

CONTENTS

CONTENTS

14 Multimeter Drivers
14.1 Rohde & Schwarz
1411 rs_hme8012 L . o

15 Miscellaneous Drivers
15.1 GENETIC . . o o o o
15.1.1 csvstream

16 Oscilloscope Drivers
16.1 Agilent L
16.1.1 agilent oL e
16.2 Antikernel Labs
16.2.1 akila . . . Lo
16.2.2 aklabs
16.3 Demo o e
16.4 Digilent e
16.4.1 digilento e
16.5 DreamSource Lab
16.5.1 dslabs
16.6 EEVengers e
16.7 Enjoy Digital
16.8 Generic
16.8.1 socketcan
16.9 Hantek o
16.10 Keysight o 0
16.10.1 agilent e
16.10.2 keysightdca
16.11 Pico Technologies
16.11.1 pico . . . o o o e
16.12 Rigol e
16.12.1 rigol
16.13 Rohde & Schwarz
16.13.1 1s . . o o e
16.13.2 rs_rtobo
16.14 Saleae e
16.15 Siglento
16.16 Teledyne LeCroy / LeCroy o o o it
16.16.1 lecroy
16.16.2 lecroy fwp
16.17 Tektronix L e
16.17.1 Note regarding “lan" transport on MSO5/6
16.18 XilinxX L e

17 SDR Drivers
17.1 Ettus Research
17.1.1 uhd . . .
17.2 Microphase

18 Spectrometer Drivers
18.1 ASEQ Instruments
18. 1.1 aseq o o

19 Power Supply Drivers

65
65
65

67
67
67

69
69
69
70
70
71
71
71
72
72
73
73
73
73
73
74
74
74
74
74
75
75
75
75
75
76
76
76
7
78
78
79
79
80

81
81
81
81

83
83
83

85

19.1 GW Instek

19.1.1 gwinstek gpdx303s
19.2 Rigol

19.2.1
19.3 Rohde & Schwarz

19.3.1
19.4 Siglent

19.4.1

rigol dp8xx

rs_hme804xo

siglent spd oo

20 RF Generator Drivers

20.1 Siglent
20.1.1

siglent _ssg

21 VNA Drivers

21.1 Copper Mountain
coppermt,

21.1.1
21.2 Pico Technology
21.2.1

22 Triggers

picovna

22.1 Trigger Properties

22.2 Serial Pattern Triggers
22.3 Dropout
22.3.1
22.3.2
22.4 Edge
22.4.1
22.4.2
22.5 Glitch
22.6 Pulse Width

22.6.1

22.7 Runt
22.7.1

22.8 Slew Rate
22.8.1

22.9 UART
22.9.1
22.9.2

23 Filters

23.1 Introduction

23.1.1 Key Concepts

23.1.2
23.2 128b/130b

23.2.1

23.2.2

23.2.3 Output Signal
23.3 64b/66b

23.3.1

23.3.2

23.3.3 Output Signal

Inputs L.
Parameters
Imputs
Parameters

Parameters

Parameters
Parameters
Imputs
Parameters

22.10 Window
22.10.1 Parameters

Conventions
Inmputs

Parameters

Imputs
Parameters

CONTENTS

CONTENTS 5

23.4 8B/10B (IBM) 103
23.4.1 Inputs 103
23.4.2 Parameters e e 104
23.4.3 Output Signal 104

23.5 8B/10B (TMDS) 105
23.5.1 Inputs 105
23.5.2 Parameters 105
23.5.3 Output Signal 106

23.6 AC Couple 107
23.6.1 Inputs e 108
23.6.2 Parameters e 108
23.6.3 Output Signal 108

23.7 ACRMS . e 109
23.7.1 Inputs 109
23.7.2 Parameters e 109
23.7.3 Output Signal 110

23.8 Add . o 111
23.8.1 Inputs 111
23.8.2 Parameters e 112
23.8.3 Output Signal 112

23.9 Area Under Curve 113
23.9.1 Inputs 114
23.9.2 Parameters e 114
23.9.3 Output Signal 114

23.10 ADLB205 e 115
23.10.1 Inputs 115
23.10.2 Parameters 115
23.10.3 Output Signal 115

23.11 Autocorrelation 116
23.11.1 Inputs 116
23.11.2 Parameters e e 117
23.11.3 Output Signal 117

23.12 Average 118
23.12.1 Inputs 118
23.12.2 Parameters e 118
23.12.3 Output Signal 119

23.13 Bandwidth 120
23.13.1 Inputs 120
23.13.2 Parameters e e 120
23.13.3 Output Signal 121

23. 14 Baseo e 122
23.14.1 Inputs 122
23.14.2 Parameters e e 122
23.14.3 Output Signal 122

23.15 BIN Import o e 123
23.15.1 Inputs 123
23.15.2 Parameters e 123
23.15.3 Output Signal 123

23.16 Burst Widtho 124
23.16.1 Inputs 124
23.16.2 Parameters e 124

23.16.3 Output Signal 124

CONTENTS

23.17 Bus Heatmap e 125
23.17.1 Parameters 125
23.17.2 Output Signal 125

23.18 CAN . L e 127
23.18.1 Inputs oL e 127
23.18.2 Parameters 128
23.18.3 Output Signal 128
23.18.4 Protocol Analyzer 128

23.19 CAN Analyzer 129

23.20 CANBitmask 130

23.21 Can-Utils Import 131

23.22 Channel Emulation 132
23.22.1 Inputs e 133
23.22.2 Parameters 133
23.22.3 Output Signalo 133

23.23 CLp . .« o e 134
23.23.1 Inputs 134
23.23.2 Parameters 134
23.23.3 Output Signal 134

23.24 Clock Recovery (D-PHY HS Mode) 135

23.25 Clock Recovery (PLL) 136
23.25.1 Inputs 136
23.25.2 Parameters 136
23.25.3 Output Signal 136

23.26 Clock Recovery (UART) 137
23.26.1 Inputs 137
23.26.2 Parameters 137
23.26.3 Output Signal 137

23.27 Complex Import L 138
23.27.1 Inputs 138
23.27.2 Parameters 138
23.27.3 Output Signal 138

23.28 Complex Spectrogram L 139

23.29 Constant e 140
23.29.1 Inputs 140
23.29.2 Parameters e 140
23.29.3 Output Signal Lo 140

23.30 Constellation 141

23.31 Coupler De-Embed 142
23.31.1 Inputso 142

23.32 CSV Export e 143
23.32.1 Inputs 143
23.32.2 Parameters 143
23.32.3 Output Signal 143

23.33 CSV Import e 144

23.34 Current Shunt 145

23.35 DDJ . .o e 146
23.35.1 Inputso 146
23.35.2 Parameterso 146
23.35.3 Output Signal 146

23.36 DDRI1 Command Bus 147

23.37 DDR3 Command Bus 148

CONTENTS 7

23.38 De-Embed 149
23.38.1 Inputs 149
23.38.2 Parameters L 149
23.38.3 Output Signal 149

23.39 Deskew 150
23.39.1 Inputs 150
23.39.2 Parameters L 150
23.39.3 Output Signal L 150

23.40 Digital to NRZ o 151
23.40.1 Inputs 151
23.40.2 Parameters 151
23.40.3 Output Signal 151

23.41 Digital to PAM4 152
23.41.1 Inputs 152
23.41.2 Parameters 152
23.41.3 Output Signal L 152

23.42 DisplayPort - Aux Channel 153

23.43 Divide e 154

23.44 Downconvert L 155

23.45 Downsample 156

23.46 DRAM Clocks e 157

23.47 DRAM Tred e 158

23.48 DRAM Trfc o e 159

23.49 Duty Cycle e 160

23.50 DVI . .o 161

23.51 Emphasis 162

23.52 Emphasis Removal 163

23.53 Enhanced Resolution 164
23.53.1 Inputs e 164
23.53.2 Parameters L 164

23.54 Envelope 165

23.55 Ethernet - 10baseT e 166

23.56 Ethernet - 100baseT1 167

23.57 Ethernet - 100baseT1 Link Training 168

23.58 Ethernet - 100baseTX 169

23.59 Ethernet - 1000baseX L 170
23.59.1 Parameterso 170
23.59.2 Output Signal 170

23.60 Ethernet - 10Gbase-R 171

23.61 Ethernet - GMII e 172

23.62 Ethernet - QSGMII. 173

23.63 Ethernet - RGMII 174

23.64 Ethernet - RMIT 175

23.65 Ethernet - SGMIL. 176

23.66 Ethernet Autonegotiation 177

23.67 Ethernet Autonegotiation Page o L. 178

23.68 Ethernet Base-X Autonegotiation L. 179

23.69 Expomential Moving Average 180
23.69.1 Inputs L 180
23.69.2 Parameters 180

23.70 Eye Bit Rate e 181

23.71 Eye Height 182

CONTENTS

23.72 Eye P-P Jitter 183
23.73 EyePattern 184
23.74 Eye Period 185
23.75 Eye Width 186
23.76 Fallo 187
23.77 FFET . . e 188
23.78 FIR e 189
23.79 Frequency 190
23.80 FSK . .o 191
23.81 Full Width at Half Maximum 192
23.81.1 Inputs 192
23.81.2 Parameterso 192
23.81.3 Output Signal L 192
23.82 Gate 193
23.83 Glitch Removal 194
23.83.1 Inputs 194
23.83.2 Parameters e 194
23.83.3 Output Signal 194
23.84 Group Delay 195
23.84.1 Inputso 195
23.84.2 Parameterso e 195
23.84.3 Output Signal 195
23.85 Histogram 196
23.85.1 Inputso 196
23.85.2 Parameters e 196
23.85.3 Output Signal 196
23.86 Horizontal Bathtubo 197
23.87 HDMI e 198
2388 IZC ... 199
23.89 IPCEEPROM 200
23.90 TPCRegister 201
23.91 IBIS Driver e 202
23.91.1 Inputs e 202
23.91.2 Parameters 202
23.91.3 Output Signal 202
23.92 Invert 203
23.93 Imtel eSPI 204
23.94 IPV4A . . e 205
23.95 IQ Demux e 206
23.96 IQ Squelch 207
23.97 Jitter ... 208
23.97.1 Inputs 208
23.97.2 Parameters 208
23.97.3 Output Signal 208
23.98 Jitter Spectrumo 209
23.99 JTAG e 210
23.100 Magnitude e 211
23.101 Maximumo e e e e e e e 212
23.101.1 Inputs o Lo e 212
23.101.2 Parameters 212
23.101.3 Output Signal 212

23.102 MDIO . . . oo 213

CONTENTS 9

23.103 Memory e 214
23.104 MIL-STD-1553 e 215
23.105 Minimum e e e 216

23.105.1 Inputso 216

23.105.2 Parameters e 216

23.105.3 Output Signal 216
23.106 MIPI D-Phy Data 217
23.107 MIPI D-Phy Escape Mode 218
23.108 MIPI D-Phy Symbol 219
23.109 MIPI DSI Frame e 220
23.110 MIPI DSI Packet 221
23.111 Moving Average oo 222
23.112 Multiply o 223
23. 113 NOISE . . . o o v 224
23.114 Overshoot e 225
23.115 PAM4 Demodulator 226
23.116 PAM Edge Detector 227
23.117 Parallel Bus 228
23.118 PcapNG Import e 229
23.119 PCle Data Link e 230
23.120 PCle Gen 1/2 Logical 231
23.121 PCle Gen 3/4/5 Logical 232
23.122 PCle Link Training 233
23.123 PCle Transport o 234
23.124 Peak Hold 235
23.125 Peak-to-Peak 236
23.126 Peaks 237
23.127 Periodo 238
23.128 Phase e 239
23.129 Phase Nonlinearity 240

23.129.1 Inputso 240

23.129.2 Parameters e 240

23.129.3 Output Signal L Lo 240
23.130 PRBS e 241
23.131 Pulse Width 242

23.131.1 Inputs Lo 242

23.131.2 Output Signal L 242
23.132 QSPI. . . . e 243
23.133 Quadrature 244
23.134 Reference Plane Extension 245
23.135 Rj+BUj . . . 246
23.136 RMS e 247

23.136.1 Inputs L 247

23.136.2 Parameters e 247

23.136.3 Output Signal 247
23.137 RiSe 248
23.138 S-Parameter Cascade 249
23.139 S-Parameter De-Embedo 250
23.140 Scalar Pulse Delay 251
23.141 Scalar Stairstep 252
23.142 Scale e 253

23.143 SD Card Command 254

10

CONTENTS

23.144 SIne e 255
23.145 SNR . . . e 256
23.145.1 Inputso 256
23.145.2 Parameters L e e 256
23.145.3 Output Signal o 256
23.146 Spectrogram e 257
23.147 SPL. . . 258
23.148 SPI Flash o 259
23.149 Squelcho 260
23.150 Step e 261
23.151 Subtract 262
23.151.1 Inputs Lo 262
23.151.2 Parameters Lo e 262
23.151.3 Output Signal 262
23.152 SWD . . . o 263
23.152.1 Inputso 263
23.152.2 Parameters e e 263
23.152.3 Output Signal 263
23.153 SWD MEM-AP e 265
23.1564 Tachometer e 266
23.155 Tapped Delay Line 267
23.156 TCP e 268
23.157 TDR . . . o 269
23.158 Time Outside Level 270
23.158.1 Inputs oL 270
23.158.2 Parameters 270
23.159 Thermal Diode 271
23.160 Threshold e 272
23.160.1 Inputso e 272
23.160.2 Parameters 272
23.160.3 Output Signal 272
23.161 TIE 273
23.162 TOD ... e 274
23.162.1 Inputs L 274
23.162.2 Parameters 274
23.162.3 Output Signal L 274
23.163 Touchstone Exporto 275
23.164 Touchstone Import 276
23.165 Trend 277
23.166 TRC Import 278
23.167 UART e 279
23.168 Unwrapped Phase 280
23.168.1 Inputs L 280
23.168.2 Parameters L e 280
23.168.3 Output Signal L 280
23.169 USB 1.0 / 2.x Activity 281
23.170 USB 1.0 / 2x Packet 282
23171 USB 1.0 /2xPCS 283
23.172 USB 1.0 /2x PMA 284
23.173 Undershoot e 285
23.174 Upsample L 286

23.175 VCD Import e 287

CONTENTS 11

23.176 Vector Frequency L e 288
23.177 Vector Phase 289
23.178 Vertical Bathtub 290
23.179 VICP e 291
23.180 Waterfall 292
23.181 WAV Import o 293
23.182 WFM Import 294
23.183 Windowed Autocorrelationo o 295
23.184 Window 296

23.184.1 Inputs L e 296

23.184.2 Parameters e e e e 296

23.184.3 Output Signal Lo 296

23185 X-Y SWEED . . .o e 297

12

CONTENTS

Chapter 1

Introduction

1.1 Introduction

ngscopeclient is a high performance, GPU accelerated remote user interface, signal processing,
protocol analysis, and automation tool for test and measurement equipment. It runs on all major
operating systems and can interoperate with a broad and continuously growing range of T&M
products from many vendors.

As of this writing, ngscopeclient is under active development but has not had a formal v0.1
release and should be considered alpha quality.

This is free software: you are free to change and redistribute it. There is NO WARRANTY, to
the extent permitted by law.

1.2 Documentation Conventions

Numbers are decimal unless explicitly specified otherwise. Binary or hexadecimal values use Sys-
temVerilog notation, for example ’b10 means the binary value 10 (2) with no length specified, and
8h41 means the 8-bit hexadecimal value 41 (decimal 65)

When referring to colors, HTML-style #RRGGBB or #RRGGBBAA notation is used. For
example #ff0000 means pure red with unspecified alpha (assumed fully opaque) and #ff000080
means pure red with 50% opacity.

Printf-style format codes are used when describing output of protocol decodes. For example,
“%02x" means data is formatted as hexadecimal bytes with leading zeroes.

Items to be selected from a menu are displayed in monospace font.

Multilevel menu paths are separated by a / character. For example, Attenuation / 1x means
to open the Attenuation submenu and select the 1x item.

If there are multiple options for a menu or configuration option, they are displayed in square
brackets and separated by a | character. For example, Move waveform to / Waveform Group [1]2]
means to select either Waveform Group 1 or Waveform Group 2 from the Move waveform to menu.

This project is under active development and is not anywhere near feature complete! As a result,
this document is likely to refer to active bug or feature request tickets on the GitHub issue trackers.
Issues are referenced as repository:ticket, for example scopehal-apps:3.

13

https://github.com/ngscopeclient/scopehal-apps/issues/3

14 CHAPTER 1. INTRODUCTION
1.3 Key Concepts

1.3.1 User Interface

Most UI elements can be interacted with by left clicking (select), left dragging (move), using the
scroll wheel (zoom), double clicking (open properties dialog), or right clicking (context menu).
Hovering the mouse over a main window UI element, or a (?) help marker in a dialog box, displays
a tooltip explaining the purpose of the element

Most text fields allow SI prefixes for scaling values (mV, us, GHz, etc). Lowercase ‘u’ is inter-
preted as “micro", equivalent to the Greek letter u. The unit is automatically added if not specified,
for example typing “2.4G" in a frequency input field will be interpreted as meaning 2.4 GHz.

1.3.2 Design Philosophy

Users familiar with conventional benchtop oscilloscopes will notice some important distinctions
between ngscopeclient and classical DSO user interfaces. While there is an initial learning curve
getting used to the different ways of doing things, these changes allow for greater productivity and
more complex analysis.

Legacy DSO user interfaces largely still imitate the front panel controls of analog CRT instru-
ments dating back to the mid 1940s. A single view of each waveform shows the entire acquisition
on a grid with a fixed number of divisions (emulating an etched graticule on a CRT) and both time
and voltage scales are defined in terms of these divisions. While more recent DSOs do allow math
functions, protocol decodes, zooms, and so on, this archaic concept has remained.

In ngscopeclient, the acquisition record length is completely decoupled from the X axis scale
of the viewport, and there is no concept of a “zoom" waveform or measuring time in “divisions".
Arbitrarily many views of a channel may be created, and each may be scaled and zoomed inde-
pendently. Acquisition record length and duration are controlled separately, from the timebase
properties dialog.

Similarly, vertical scale for waveforms is defined in terms of full-scale range, a far more intuitive
and useful metric than arbitrary “divisions". While horizontal grid lines are still displayed in wave-
form views for convenience, their number, spacing, and locations may change. Tall plots will have
more scale divisions than short ones, and the divisions are always located at round numbers even if
this requires the grid to not be centered in the plot (Fig. 1.1)

Rather than optimizing for a touch screen (as is common for benchtop oscilloscopes), ngscopeclient’s
UI is heavily mouse driven and context based. Space used by always-visible buttons, sliders, etc
is kept to a minimum in order to keep as much screen real estate as possible usable for waveform
display. Additional controls are displayed in menus or pop-up dialogs which can be closed, moved
out of view, or docked as needed.

1.3.3 Terminology

The overall software package consists of ngscopeclient (graphical user interface frontend), libscopehal
(C++ library for core APIs and instrument drivers), and libscopeprotocols (filter graph blocks).
End users will normally use ngscopeclient, however it is possible to interface with libscopehal and
libscopeprotocols directly from C++ code for writing low level test automation tools or even a fully
custom application-specific user interface.

Data consists of two fundamental types: scalars and waveforms. A scalar is a single numeric
value with an associated unit, for example “500 mV". A waveform is a sequence of samples plotted

1.3. KEY CONCEPTS 15

¥ Waveform Group 2

Figure 1.1: Example waveform showing off-center grid and round-numbered grid lines

against another quantity, for example voltage versus time for an oscilloscope waveform or amplitude
versus frequency for a spectrum analyzer waveform.

Samples may be of arbitrary type (analog value, digital bit, SPI bus event, etc.), but all samples
in a single waveform must be of the same data type. Waveforms may be either uniform (sampled
at constant rate with no gaps between samples) or sparse (sampled at arbitrary intervals, possibly
with gaps between samples).

An instrument is a physical piece of hardware ! which can be remote controlled and interacted
with. The connection between ngscopeclient and an instrument is provided by a transport, such as
a USBTMC interface, a GPIB data stream, or a TCP socket. A driver is a software component,
either supplied as part of the libscopehal core or a third party plugin, which controls an instrument.

Each instrument has one or more? channels. A channel corresponds to a single logical “piece" of
an instrument and may consist of one or more physical connectors: a typical oscilloscope channel
has a single BNC input while a typical power supply output has two banana jacks.

Each channel may provide features associated with one or more instrument types, and not all
channels on an instrument are guaranteed to be the same type(s). For example, an oscilloscope may
consist of several channels providing both waveform acquisition (oscilloscope) and scalar acquisition
(multimeter) capabilities, one channel providing only trigger input capability, and one channel
providing function generator output capability.

All channels, triggers, and math / protocol decode blocks are considered nodes within the filter
graph. The filter graph is a directed acyclic graph (a set of nodes and connections between them,
with no loops permitted) connecting all of the various data inputs and outputs of the experimental
setup together.

Each node may have zero or more inputs, of either scalar or waveform type, and zero or more
output streams. A stream is a data source which may or may not have an associated scalar or
waveform value; for example a math block with missing inputs or an instrument which has not yet
triggered do not have a meaningful value. A typical oscilloscope channel might have one waveform
output stream, while a typical power supply channel might have two scalar output streams for
measured current and voltage. A sink block for writing a waveform to a CSV file would have one
input for each column in the generated file.

LOr a simulated mock-up of one, such as the “demo" oscilloscope driver used for testing
2Zero channels is legal in the API, however such an instrument would be of little practical use!

16 CHAPTER 1. INTRODUCTION

Instrument hardware limitations or the particular math/decode block’s design will impose var-
ious restrictions on legal connections in the filter graph. For example, a trigger can normally only
accept signals from hardware input channels on the same instrument. An FFT filter can only accept
uniformly sampled analog waveforms. A UART protocol decode can only accept digital waveforms,
so analog waveforms must be converted to digital by a thresholding filter before they can be decoded.

1.4 Revision History

e February 19, 2024: [in progress| Initial draft

Chapter 2

Legal Notices

2.1 Introduction

ngscopeclient, libscopehal, and the remainder of the project are all released under the 3-clause BSD
license (reproduced below). This is a permissive license, explicitly chosen to encourage integration
with third-party open source and commercial projects.

2.2 License Agreement

Copyright (c) 2012-2023 Andrew D. Zonenberg and contributors. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions,
and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions, and the following disclaimer in the documentation and/or other materials provided
with the distribution.

e Neither the name of the author nor the names of any contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS "AS IS" AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHORS BE HELD LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

17

18 CHAPTER 2. LEGAL NOTICES

2.3 Trademarks

This document frequently mentions the names of various test equipment vendors and products in
order to discuss ngscopeclient’s compatibility with said products. The reader should assume that
these are all trademarks of their respective owners.

2.4 Third Party Licenses

TODO: go through full dependency list and update this

e Dear ImGui (static, MIT license)

e FFTS (shared, BSD-3)

e imgui-node-editor (static, MIT license)
e liblxi (shared, BSD-3/EPICS)

e vkFFT (static, MIT license)

e yaml-cpp (shared, MIT license)

2.4.1 avx_mathfun.h (zlib license)

AVX implementation of sin, cos, sincos, exp and log
Based on "sse mathfun.h", by Julien Pommier http://gruntthepeon.free.fr/ssemath/

Copyright (C) 2012 Giovanni Garberoglio Interdisciplinary Laboratory for Computational Sci-
ence (LISC) Fondazione Bruno Kessler and University of Trento via Sommarive, 18 1-38123 Trento

(Italy)

This software is provided ’as-is’, without any express or implied warranty. In no event will the
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote
the original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

3. This notice may not be removed or altered from any source distribution.

Chapter 3

Getting Started

3.1 Host System Requirements

The majority of development is performed on Linux operating systems (primarily Debian) so this
is the most well tested platform, however Windows and Mac OS are also supported.

Any 64-bit Intel or AMD processor, or Apple Silicon Mac, should be able to run ngscopeclient.
If AVX2 and/or AVX512F support is present ngscopeclient will use special optimized versions of
some signal processing functions, however neither instruction set is required. Other (non Apple
Silicon) ARM64 platforms may work if a compatible GPU is available, but have not been tested.
32-bit platforms are not supported due to the significant RAM requirements (but we won’t stop
you from trying).

A mouse with scroll wheel, or touchpad with scroll gesture support, is mandatory to enable full
use of the Ul. We may explore alternative input methods for some Ul elements in the future.

Any GPU with Vulkan support should be able to run ngscopeclient, however Vulkan 1.2 will
deliver better performance. The minimum supported GPUs are:

NVIDIA: Maxwell architecture (GeForce GTX 700 series and newer, February 2014)

AMD: GCN based (Radeon HD 7000 and newer, January 2012)
Intel: Iris Plus 540 or HD Graphics 520 (Skylake, August 2015)

Apple: all Apple Silicon devices (M1 and newer). Newer Intel devices with Metal support
should work but support is not guaranteed.

The minimum RAM requirement to launch ngscopeclient is relatively small; however, actual
memory consumption is heavily dependent on workload and can easily reach into the tens of giga-
bytes when doing complex analysis on many channels with deep history.

Typical RAM consumption examples:

e Default configuration with demo scope (4 channels 100K points, 10 waveforms of history, no
analysis): 250 MB

e 4M point live streaming with 10 waveforms of history, eye pattern, 8B/10B decode, and jitter
histogram: 650 MB

e Single 512M point waveform, no analysis or history: 2.1 GB

e 512M point P/N channel waveforms with CDR and eye pattern, no history: 8.3 GB

19

20 CHAPTER 3. GETTING STARTED

Large amounts of GPU RAM are required for working with deep waveforms, especially if you
intend to perform complex analysis on them. Analog waveforms are stored in 32-bit floating point
format internally, so a single 256 megapoint waveform will consume 1GB of GPU memory. Inter-
mediate results in multi-step filter pipelines require GPU memory as well, even if not displayed.

3.2 Instrument Support

ngscopeclient uses the libscopehal library to communicate with instruments, so any libscopehal-
compatible hardware should work with ngscopeclient. See the Oscilloscope Drivers section for more
details on which hardware is supported and how to configure specific drivers.

3.3 Compilation

ngscopeclient can be compiled on Linux, macOS, and Windows. While the compilation process is
generally similar, various steps differ among platform and distro.

3.3.1 Linux

1. Install dependencies.

Debian

Basic requirements:

sudo apt-get install build-essential git cmake pkgconf libgtkmm-3.0-dev \
libcairomm-1.0-dev libsigc++-2.0-dev libyaml-cpp-dev catch2 libglfw3-dev curl xzip

On Debian bookworm and later, you can use system-provided Vulkan packages. Skip this on
Debian bullseye, or if you choose to use the Vulkan SDK instead:

sudo apt-get install libvulkan-dev glslang-dev glslang-tools spirv-tools glslc

On Debian bullseye, you will need cmake from backports:

sudo bash -c 'echo "deb http://deb.debian.org/debian bullseye-backports main” >> \
/etc/apt/sources.list.d/bullseye-backports.list'

sudo apt-get update

sudo apt-get install cmake/bullseye-backports

To build the LXI component (needed if you have LXI- or VXI-11-based instruments):

sudo apt install liblxi-dev libtirpc-dev

For GPIB, you will need to install Linux-GPIB; instructions for this are out of scope here.

To build the documentation, you will also need LaTeX packages:

sudo apt install texlive texlive-fonts-extra texlive-extra-utils

Ubuntu

Basic requirements:

sudo apt install build-essential git cmake pkgconf libgtkmm-3.0-dev \
libcairomm-1.0-dev libsigc++-2.0-dev libyaml-cpp-dev catch2 libglfw3-dev curl xzip

3.3. COMPILATION 21

On Ubuntu 22.10 and earlier (including 20.04 and 22.04), you will need to use the Vulkan
SDK. Instructions for installing this are in a later step. On Ubuntu 23.04 and later, you can
instead use system-provided Vulkan packages:

sudo apt-get install libvulkan-dev glslang-dev glslang-tools spirv-tools glslc

To build the LXI component (needed if you have LXI- or VXI-11-based instruments):

sudo apt install liblxi-dev libtirpc-dev

For GPIB, you will need to install Linux-GPIB; instructions for this are out of scope here.

To build the documentation, you will also need LaTeX packages:

sudo apt install texlive texlive-fonts-extra texlive-extra-utils

Fedora

Basic requirements:

sudo dnf install git gcc g++ cmake make pkgconf cairomm-devel gtk3-devel \
libsigc++30-devel yaml-cpp-devel catch-devel glfw-devel

System-provided Vulkan packages. Skip these if you choose to use the Vulkan SDK instead:

sudo dnf install vulkan-headers vulkan-loader-devel glslang-devel glslc \
libshaderc-devel spirv-tools-devel

To build the LXI component (needed if you have LXI- or VXI-11-based instruments):

sudo dnf install liblxi-devel libtirpc-devel

For GPIB, you will need to install Linux-GPIB; instructions for this are out of scope here.

To build the documentation, you will also need LaTeX packages:

sudo dnf install texlive

Alpine Linux

As Alpine Linux uses musl libc, you will need to use system-provided Vulkan packages, and
not the Vulkan SDK.

apk add git gcc g++ cmake make pkgconf cairomm-dev gtk+3.0-dev libsigc++-dev \
yaml-cpp-dev catch2-3 vulkan-loader-dev glslang-dev glslang-static glfw-dev \
shaderc-dev spirv-tools-dev

If you are using an older stable release (such as CentOS 7), you may need to install some
dependencies from source.

2. Install FFTS library:

This installs the library into /usr/local. If you want to install it into a custom prefix, you
will need to use CMAKE INSTALL PREFIX here and CMAKE PREFIX PATH when
running cmake for scopehal-apps, which are out of scope for these instructions.

cd ~

git clone https://github.com/anthonix/ffts.git
cd ffts

mkdir build

cd build

cmake .. -DENABLE_SHARED=ON

make -j4

sudo make install

22 CHAPTER 3. GETTING STARTED

3. Install Vulkan SDK:

In many cases, you can install the SDK components from distro-provided repositories, which is
covered above. When possible, this is preferred over installing the Vulkan SDK. If you choose
not to, or are running a Linux distro that does not provide these packages (for instance, Debian
Bullseye, Ubuntu versions prior to 23.04, or other stable distros), the following instructions
cover installing and loading the Vulkan SDK.

The latest tested SDK at the time of documentation update is version 1.3.275.0. Newer SDKs
are supported, but breaking changes sometimes take place. If you are using a newer SDK and
run into problems, please file a bug report.

If you are using Ubuntu 20.04 or 22.04, you may install the .deb packaged SDK release instead
of following the instructions below. This may work for Debian as well but is not supported.

Alternatively, to use the tarball packaged SDK, download and unpack the tarball. You can
manually download the SDK, or do the following:

cd ~

mkdir VulkanSDK

cd VulkanSDK

curl -LO 'https://vulkan.lunarg.com/sdk/download/1.3.275.0/1linux/vulkansdk-1inux-\
x86_64-1.3.275.0.tar.xz'

tar xfv vulkansdk-linux-x86_64-1.3.275.0.tar.xz

And then source the ‘setup-env.sh‘ file:

source "$HOME/VulkanSDK/1.3.275.0/setup-env.sh”

When using the tarball-packaged SDK, you will need to source the ‘setup-env.sh® file any
time you want to compile or run ngscopeclient. For convenience, you can add this to your
‘.bash profile' or equivalent:

echo "source \"$HOME/VulkanSDK/1.3.275.0/setup-env.sh\"" >> ~/.bash_profile

4. Build scopehal and scopehal-apps:

cd ~

git clone --recursive https://github.com/ngscopeclient/scopehal-apps.git
cd scopehal-apps

mkdir build

cd build

cmake .. -DCMAKE_BUILD_TYPE=Release

make -j4

3.3.2 macOS

1. Install dependencies.

You will need Xcode (either from the App Store or the Apple developer site); after installing,
run it once for it to install system components. This provides gcc, g++, make, and similar
required packages.

With Homebrew (brew.sh):

2. Basic requirements:

brew install pkg-config cairomm libsigc++ glfw cmake yaml-cpp glew catch2 libomp

3. Vulkan SDK components (skip if using the Vulkan SDK):

brew install vulkan-headers vulkan-loader glslang shaderc spirv-tools molten-vk

https://packages.lunarg.com
https://vulkan.lunarg.com/sdk/home
https://vulkan.lunarg.com/sdk/home
https://brew.sh

3.3. COMPILATION 23

4. Alternatively, install the Vulkan SDK:

Download and install the Vulkan SDK.. The latest tested SDK at the time of documentation
update is version 1.3.275.0. Newer SDKs are supported, but breaking changes sometimes take
place. If you are using a newer SDK and run into problems, please file a bug report.

And then source the ‘setup-env.sh‘ file:

source "$HOME/VulkanSDK/1.3.275.0/setup-env.sh”

When using the SDK, you will need to source the ‘setup-env.sh‘ file any time you want
to compile or run ngscopeclient. For convenience, you can add this to your ‘.zprofile’ or
equivalent:

echo "source \"$HOME/VulkanSDK/1.3.275.0/setup-env.sh\"" >> ~/.zprofile

5. Build scopehal and scopehal-apps:

cd ~

git clone --recursive https://github.com/ngscopeclient/scopehal-apps.git
cd scopehal-apps

mkdir build

cd build

cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_PREFIX_PATH="$(brew --prefix);$(brew --\
prefix)/opt/libomp”

make -j4

3.3.3 Windows

On Windows, we make use of the MSYS2 development environment, which gives us access to
the MingGW-w64 toolchain. Since this toolchain allows ngscopeclient to be compiled as a native
Windows application, the project might be run outside of MSYS2.

Building from source

1. Download and install MSYS2. You can download it from msys2.org or github.com /msys2/msys2-
installer /releases

The following steps can be done in any MSYS-provided shell.

2. Install git and the toolchain:

pacman -S git wget mingw-w64-ucrt-x86_64-cmake mingw-w64-ucrt-x86_64-toolchain

3. Install general dependencies:

pacman -S mingw-w64-ucrt-x86_64-libsigc++ mingw-w64-ucrt-x86_64-cairomm mingw-w64\
-ucrt-x86_64-yaml-cpp mingw-w64-ucrt-x86_64-glfw mingw-w64-ucrt-x86_64-catch

4. Install Vulkan dependencies:

pacman -S mingw-w64-ucrt-x86_64-vulkan-headers mingw-w64-ucrt-x86_64-vulkan-\
loader mingw-w64-ucrt-x86_64-shaderc \
mingw-w64-ucrt-x86_64-glslang mingw-w64-ucrt-x86_64-spirv-tools

5. Install FFTS:

pacman -S mingw-w64-ucrt-x86_64-ffts

https://vulkan.lunarg.com/sdk/home
https://www.msys2.org/
https://github.com/msys2/msys2-installer/releases
https://github.com/msys2/msys2-installer/releases

24 CHAPTER 3. GETTING STARTED

6. Check out the code

cd ~
git clone --recursive https://github.com/ngscopeclient/scopehal-apps

All following steps are to be done in a UCRT64 shell.

7. Build manually:

cd scopehal-apps
mkdir build

cd build

cmake ..

make -j4

8. Install scopehal and scopehal-apps:

At the moment, installation scripts are not yet complete. The binaries can be found in the
build directory, such as ngscopeclient in $HOME /scopehal-apps/build /src/ngscopeclient.

3.4 Running ngscopeclient

When running ngscopeclient with no arguments, an empty session (Fig. 3.1) is created. To perform
useful work, you can:

e Open a saved session and reconnect to the instruments (File | Open Online)
e Open a saved session without reconnecting to the instruments (File | Open 0ffline)

e Open a recently used session (File | Recent Files)

Import waveforms from a third party file format(Add | Import)

Connect to an instrument (Add | Oscilloscope, Add | Multimeter, etc.)

Generate a synthetic waveform (Add | Generate)

ngscopeclient _ox

Figure 3.1: Empty ngscopeclient session

3.4. RUNNING NGSCOPECLIENT 25

3.4.1 Console verbosity arguments

ngscopeclient takes standard liblogtools arguments for controlling console debug verbosity.

If no verbosity level is specified, the default is “notice" (3). (We suggest using —debug for routine
use until the v1.0 release to aid in troubleshooting.)

e —debug
Sets the verbosity level to “debug" (5).

e -1 [file], -logfile [file]
Writes a copy of all log messages to file. This is preferred over simply redirecting output
with pipes, as console escape sequences are stripped from the file log output.

e -L [file], -logfile-lines [file]
Same as —logfile except line buffering is turned on.

e -q, —quiet
Reduces the verbosity level by one. Can be specified more than once to lower verbosity by
several steps.

e —trace [class], —trace [class::function]
Enables extra debug output from the class class or the function class::function. Has no
effect unless —debug is also specified.

e —stdout-only
Sends all logging output to stdout. By default, error (level 1) and warning (level 2) messages
go to stderr.

e —verbose
Sets the verbosity level to “verbose" (4).

26

CHAPTER 3. GETTING STARTED

Chapter 4

Main Window

The only fixed Ul elements in ngscopeclient are the main menu and toolbar at the top of the window.
All remaining space may be filled with waveform plots, properties dialogs, protocol analyzers, and
other dockable windows as required for a given experimental setup. This flexibility allows almost the
entire screen to be dedicated to waveform views, or more space allocated to controls and protocol
decodes.

4.1 Menu

4.1.1 File

This menu contains commands for saving and loading session files.

e Open Online...
Loads a session file and reconnects to the instrument(s) to continue existing work. Settings
from the saved session will be applied and overwrite the current channel and timebase config-
uration of the instrument, if different.

e Open Offline...
Loads a session file in offline mode, allowing you to work with saved waveform data without
connecting to the instrument(s) the data was captured from.

e Recent Files
Displays a list of recently accessed session files and allows them to be opened online or offline.

e Save
Saves Ul configuration and waveform data (including history) to a session file for future use.

A session consists of a YAML file called filename.scopesession containing instrument and Ul
configuration, as well as a directory called filename data which contains waveform metadata
and sample values for all enabled instrument channels, including history.

Note that both the .scopesession and the data directory must be copied if moving the session
to a new location in order to preserve waveform data. If you only wish to restore the filter
graph and Ul configuration without waveform content, the data directory is not required.

e Save As...
Saves the session to a new file, rather than the current one.

e Close
Close the current session without exiting ngscopeclient.

27

28 CHAPTER 4. MAIN WINDOW

e Quit
Exits the application

4.1.2 View

e Fullscreen
Toggles full-screen mode

e Persistence Setup
Opens the Persistence Setup dialog, allowing you to control the decay coefficient for persistence
maps.

4.1.3 Add
This menu allows new waveforms views or instrument connections to be created.

e BERT
Connect to a new, or recently used, bit error rate tester

e | oad
Connect to a new, or recently used, electronic load

e Generator
Connect to a new, or recently used, function generator

e Misc
Connect to a new, or recently used, miscellaneous instrument

e Multimeter
Connect to a new, or recently used, multimeter

e Oscilloscope
Connect to a new, or recently used, oscilloscope

e Power Supply
Connect to a new, or recently used, power supply

e RF Generator
Connect to a new, or recently used, RF signal generator

e SDR
Connect to a new, or recently used, software-defined radio

e Spectrometer
Connect to a new, or recently used, optical spectrometer

e VNA
Connect to a new, or recently used, vector network analyzer

e Channels
Displays a list of filters and instrument channels which can be opened in a new waveform view

e Generate
Allows synthetic waveforms to be generated for testing, simulation, and channel design appli-
cations

e Import
Allows waveforms to be loaded from external data files in various interchange formats

4.1.

MENU 29

4.1.4 Setup

Manage Instruments...
Opens the Manage Instruments dialog, which allows control over synchronization, deskewing,
and cross-triggering of multiple instruments.

Timebase. ..
Opens the Timebase Properties dialog, allowing sample rate and memory depth of each con-
nected instrument to be adjusted.

Trigger...
Opens the Trigger dialog, allowing configuration of trigger settings.

Preferences. ..
Opens the Preferences dialog.

4.1.5 Window

This menu provides access to various utility windows.

Analyzer
Opens protocol analyzer dialogs for active protocol decodes

Generator
Opens the properties dialog for a currently connected function generator

Multimeter
Opens the properties dialog for a currently connected multimeter

Power Supply
Opens the properties dialog for a currently connected power supply

SCPI Console
Opens a console window allowing you to send raw SCPI commands to a currently connected
instrument.

This is a low level debug tool primarily intended for use by driver developers. The console
is interlocked with background threads polling the instrument, so that replies to commands
typed in the console will not be mixed with replies which the instrument driver is expecting
to its own commands. However, commands sent in the console will bypass any caching in the
driver and can easily lead to the driver and instrument firmware states becoming mutually
inconsistent.

Lab Notes
Opens the Lab Notes dialog, allowing you to take notes on your experiment.

Log Viewer

Opens the Log Viewer dialog,, allowing you to see debug log messages generated by the
application. This is the same log stream which is normally written to stdout, but this dialog
allows it to be accessed even when the application was not launched from a shell session and
stdout is thus inaccessible.

Measurements
Opens the Measurements window, displaying scalar-valued measurements coming from instru-
ment channels or filter blocks.

30 CHAPTER 4. MAIN WINDOW

e Performance Metrics
Opens the Performance Metrics window, which provides access to debug information which
can be helpful when debugging slow application performance, optimizing the code, or bench-
marking instruments.

e History
Opens the History dialog (see Chapter 8), which allows access to a rolling buffer of recently
acquired waveforms.

e Filter Graph
Opens the filter graph editor (see Chapter 9)

4.1.6 Debug

Provides access to GUI toolkit test dialogs and other features intended only for developers.

4.1.7 Help

Nothing here yet, we should add at least an About dialog at some point...

Chapter 5

Dialogs

5.1 Lab Notes

The Lab Notes dialog allows you to take notes on your experimental setup. It contains two tabs:
“setup notes" and "general notes".

The contents of the Setup Notes tab are displayed on the Speed Bump dialog when loading a
session file. The General Notes are only displayed within the Lab Notes dialog and are intended
purely as a place for recording interesting observations made during the experiment.

Minimal Markdown syntax (headings and bullets) is currently supported.*

Lab notes are saved as Markdown files in the data directory for the session and can be opened in
any text editor or Markdown viewer. Note that they are overwritten each time the session is saved,
so you should not modify them using an external tool while the session is open in ngscopeclient or
your changes may be lost.

Images and links are supported by the Markdown renderer library but the integration to properly use them is
not yet finished; tables are not supported but this will likely be added in the future.

31

32 CHAPTER 5. DIALOGS

Lab Motes

Setup Motes General Motes

Describe your experimental setup in sufficient detail that you could verify it's wired correctly. Limited Markdown syntax is supported.

u can confirm all instrument channels are con ted correctly before making

CH1: 12V fan
2V0 Left rack

* p_su-nq * psu-left CH1: 12V fan
* dmm-r g * dmm-left: 12V0
* wrB: CH2 RP4030 on 12V0_SWIN

Center
* sdl: 12V output

Right rack

#® psu-right: CH1,CH2 series for 48V input
® drmme-ric _
CH2 RP4 12v0_SWIN

Figure 5.1: Lab notes dialog

5.2 Log Viewer

The Log Viewer dialog provides an alternate way to view log messages sent to stdout / stderr,
which may be useful for debugging if the application was launched from a desktop icon or similar
and there is no access to the console.

It can be found under the Window | Log Viewer menu.

Log Viewer

Initializing 3.3.2 L O cl shared
GLFW regui L

N o

intl6:

Figure 5.2: Log Viewer dialog

5.3. PERFORMANCE METRICS 33
5.3 Performance Metrics

The Performance Metrics dialog displays statistics on performance of rendering, waveform acquisi-
tion, and signal processing. This data is primarily intended for developers comparing before/after
performance of optimizations and code changes.

It can be found under the Window | Performance Metrics menu.

Performance Metrics

¥ Rendering

1947
¥ Filter graph

Figure 5.3: Performance Metrics dialog

5.3.1 Rendering

Displays render loop framerate, monitor refresh rate, total time spent last frame in the rasterization
and tone mapping shaders, and the number of vertices and indices drawn as Vulkan geometry. Note
that waveforms are drawn by a compute shader and do not contribute towads the vertex/index
totals, other than a single textured rectangle used for displaying the shader output.

5.3.2 Filter graph

Number of filter blocks in the current graph, and run time for the most recent evaluation of the
filter graph.

5.3.3 Acquisition
Displays the acquisition rate, in waveforms per second. This data is collected using a rather simple
mechanism and may not be usefully accurate if multiple trigger groups are in use.

Additionally, this section displays the number of pending waveforms for each instrument (wave-
forms which have been acquired but not yet passed to the filter graph). This number should normally

34 CHAPTER 5. DIALOGS

be flickering between zero and one if acquisition is active and zero otherwise; larger values indicate
that the instrument is supplying data faster than ngscopeclient can process it.

5.3.4 Memory

Displays the total amount of available pinned memory (CPU-side memory eligible to be shared
with the GPU) and local memory (memory attached to the GPU), as well as the amount of each
currently in use.

5.4 Preferences

The Preferences dialog allows you to configure various application settings which are not specific to
a particular experimental setup. It can be found under the Setup | Preferences menu.

Figure 5.4: Preferences dialog

5.4.1 Appearance

This section allows you to configure fonts, colors, and other display settings for the application.

5.4.2 Drivers

This section allows you to configure default configurations for various instrument drivers.

Teledyne LeCroy

e Force 16 bit mode (default on): Always use 16-bit format for downloading data from the in-
strument, even if it only has an 8-bit ADC. This doubles the amount of network bandwidth
required and may reduce waveforms-per-second performance, but provides smoother wave-
forms since the instrument performs DSP flatness correction leading to >256 possible output
values in a given waveform.

5.4.3 Files

o Max recent files: Specify the number of files to display under the File | Recent Files menu.

5.5. SPEED BUMP 35

5.4.4 Miscellaneous
Menus

o Recent instrument count: Specify the number of recently used instruments to remember

5.4.5 Power
Events

This section provides settings allowing power vs performance tradeoffs. The default settings are
appropriate for a desktop or laptop running on AC power; if running on a laptop with battery
power you may wish to tune these to extend battery lifespan.

e Fwent loop mode: Controls the operating mode for the main application event loop.

— In Performance mode, run at the screen refresh rate. This allows for the highest possible
waveform processing rate and the smoothest interactivity, but may waste energy if you
are spending a lot of time looking at the screen without actively acquiring or processing
waveforms.

— In Power mode, run at a greatly reduced frequency (default 4 Hz but configurable by the
Polling Timeout setting) unless a redraw is triggered by mouse movement or keyboard
input. This will limit the rate of waveform acquisition and lead to a slightly jerkier user
interface, but saves power.

e Polling timeout: If the event loop is in Power mode, specifies the timeout before the event
loop will run if there is no user input.

5.5 Speed Bump

The Speed Bump dialog is displayed when loading a session file, prior to committing changes to the
instrument, if:

e The session file contains any user-created notes on the lab setup

e Any of the instrument settings in the session file do not match the current configuration of
the corresponding instrument, and the direction of the change has potential to cause damage
to the instrument or DUT (increasing output voltage, removing input attenuation, etc).

This is intended as a safeguard to prevent damaging hardware by accidentally loading the
wrong session file. It also provides an opportunity to confirm that you have re-created the original
experimental setup exactly if you are switching a lab bench between multiple projects and using
saved sessions to restore instrument state.

Pressing the Abort button cancels loading of the session without applying any of the potentially
dangerous changes. The instruments may be partially reconfigured in this state, as some changes
(such as sample rate or memory depth configuration) are always safe to make and thus may execute
prior to the warning being displayed.

Pressing the Proceed button allows ngscopeclient to proceed with loading the session and re-
configuring hardware. You must check the “I have reviewed the instrument configuration" box in
order to enable the Proceed button.

36 CHAPTER 5. DIALOGS

WARNING: Potential for hardware damage!

P i ur lab notes and confirm that the experimental setup matches your

Left rack

* psu-left CH1: 12V fan
* dmm-left: 12V0

Center

* sdl: 12V output

Right rack

nfi
strument and/or DUT.

Instrument O t Hardware on file Info
sdl Load enable off o Turning load on
psu-right Master enable off o Turning global power switch on

| have reviewed the instrument configuration and confirmed it will not cause damaage.

Abort Fro

Figure 5.5: Speed Bump dialog

5.6 Timebase

The Timebase dialog allows you to configure sample rate and record length for oscilloscopes. It also
provides control over functionally similar “what to look at" settings for other instruments, such as
center frequency and span for spectrum analyzers or sweep range and point count for vector network
analyzers.

It can be found under the Setup | Timebase menu.

¥ Sample rate

¥ Sampl h

Figure 5.6: Timebase dialog

Chapter 6

Waveform Groups

A waveform group is a collection of one or more waveform views stacked vertically under a common
timeline. All waveform views within a group are equally sized and share the same timeline and
vertical cursor(s), but may have independent vertical range and offset settings.

When a new oscilloscope is added to an empty ngscopeclient session, all enabled channels on
the attached instrument(s) are displayed in a single waveform group (Figure 6.1). If no channels
are enabled at connection time, the first channel will be enabled and displayed.

ngscopeclient

Figure 6.1: Top level ngscopeclient window with a single waveform group

As you add protocol decodes or look at different parts of a waveform, it may be helpful to create
additional waveform groups. Typical reasons for creating additional groups include:

e Zooming into one set of signals to see detail on short time scales while maintaining a high
level overview of others

e Viewing signals with incompatible horizontal units. For example, a FFT has horizontal units
of frequency while an analog waveform has horizontal units of time. Eye patterns also have
horizontal units of time, but are always displayed as two Uls wide and cannot be zoomed.

37

38 CHAPTER 6. WAVEFORM GROUPS
6.1 Managing Groups

New waveform groups are automatically created when adding a channel which is not compatible
with any existing group. For example, if your session has a single group containing time-domain
waveforms, adding a FFT filter block will result in a new waveform group being created to contain
the FFT. Additional frequency-domain waveforms will then be added to this group by default.

A new group may also be created at any time by clicking on a channel name and dragging it
to the top, bottom, left, or right edge of an existing group. An overlay (Fig. 6.2) will be displayed
showing the resulting split. For example, dropping the channel on the right side of the window
produces the layout shown in Fig. 6.3.

Figure 6.3: Result of dropping a waveform to the right side split area

Waveform groups may be resized arbitrarily by dragging the separator between them. The title
bar of a group may also be dragged, allowing the entire group to be undocked as a floating window.
Floating windows can be re-docked by dragging the title bar back into the main ngscopeclient

6.1. MANAGING GROUPS 39

window (or another floating window), creating new tabs or splitting existing groups as desired (Fig.
6.4).

ngscopeclient -

Figure 6.4: Example of complex window layout with multiple tabs, splitters between docked wave-
form groups, and a group in a floating window

40

CHAPTER 6. WAVEFORM GROUPS

Chapter 7

Waveform Views

A waveform view is a 2D graph of a signal or protocol decode within a waveform group.

Arbitrarily many channels of data may be displayed within a single view, however all analog
channels within a single view share the same Y axis unit, gain, and offset. Digital channels and
protocol decodes can be overlaid on analog waveforms or displayed in their own dedicated views.

2D density plots, such as eye patterns, spectrograms, and waterfall plots, cannot share a wave-
form view with any other channel.

7.1 Navigation

Scrolling with the mouse wheel adjusts the horizontal scale of the current waveform group, zooming
in or out centered on the position of the mouse cursor.

7.2 Plot Area

The plot area shows the waveform being displayed. The horizontal grid lines line up with the voltage
scale markings on the Y axis. If the plot area includes Y=0, the grid line for zero is slightly brighter.

The waveform is drawn as a semi-transparent line so that when zoomed out, the density of
voltage at various points in the graph may be seen as lighter or darker areas. This is referred to as
“intensity grading".

‘nuuu“n“lm XTI t NN u . (N RNTNA(IN

(A

““”'3- Ill HI ll \H lil ||| | I\é

T
lllﬁl‘llllllll\ |‘|||'|'|‘n}a||mm NINRIN i| | R

Figure 7.1: Intensity-graded waveform

41

42 CHAPTER 7. WAVEFORM VIEWS

7.3 Y Axis Scale

Each waveform view has its own Y axis scale, which is locked to the ADC range of the instrument.

Channel gain may be configured by scrolling with the mouse wheel, and offset may be adjusted
by dragging the scale with the left mouse button. Pressing the middle mouse button on the Y axis
will auto-scale the vertical gain and offset to show the full span of all channels in the view with 5%
of vertical margin.

If a left-pointing arrow (as seen in Fig. 7.2) is visible, one of the channels in the view is selected
as a trigger source. Click on the arrow and drag up or down to select the trigger level. Some trigger
types, such as window triggers, have two arrows for upper and lower levels.

Figure 7.2: Waveform view showing trigger arrow on Y axis

7.4 Channel Label

The top left corner of each waveform view contains a legend with a label for each channel being
displayed in the view.

Mousing over the channel name displays a tooltip (Fig. 7.3) with some helpful information about
the waveform. The exact information displayed in the tooltip depends on the type of data being
displayed, for example analog waveforms display sample rate and record length while eye patterns
display the number of integrated Uls.

Channel & of instrument ps6

1Ms

Figure 7.3: Example tooltip on channel label

The label may be dragged with the left mouse button to move the waveform to a different
location. Dragging to the left or right edge of a waveform view, or the top or bottom edge of the
topmost or bottommost waveform in a group, will split the group. Dragging to the left half of
another waveform view, whether in the same group or a different group, moves the channel to that
view. Dragging to the right half of the view adds a new view within the same group containing only
the dragged waveform.

Double-clicking the label opens the channel properties dialog (Fig. 7.4). As with all dialogs in
ngscopeclient, the properties dialog may be left in the default floating state or docked.

7.5. CURSORS AND MARKERS 43

LPF{Tone, 100 MHz)

Info

Filte
1

7 BIEEIED Nick

a — — I
R:255 G:255 : alor — L 8227 [l colo
¥ Input
D1330

¥ in

¥ Filter Type

upper)

Figure 7.4: Example of properties dialogs for three different channels

The properties dialog will always contain an editable nickname for the channel, a color chooser,
and some basic information about the instrument channel or filter block sourcing the data. Addi-
tional settings may be available but will vary depending on the type of instrument or filter. In Fig.
7.4, the left dialog shows a direct coaxial input to a Pico PicoScope 6824E, which has variable ADC
resolution. The center dialog shows an active differential probe with auto-zero capability, connected
to a Teledyne LeCroy SDA816Zi-A which has a mux for selecting between two input connectors for
each channel. The right dialog shows a FIR filter with several configurable settings.

Right clicking on the label opens a context menu. The context menu allows setting of persistence
mode, deleting the waveform, and creating new filter blocks or protocol decodes with the selected
waveform as an input.

7.5 Cursors and Markers

Cursors are movable annotations which can be used to temporarily mark points of interest in a
waveform and examine data values. Markers are similar to cursors but intended for long-term
marking of specific points in a single acquisition and do not provide readout functionality.

7.5.1 Vertical Cursors

A vertical cursor describes a point in time relative to the start of the acquisition. When new
waveforms are acquired, the cursor remains at the same offset in the new waveform. When the view
is panned horizontally, the cursor scrolls with the waveform and remains at the same point in the
waveform.

To add a vertical cursor (Fig. 7.5), right click in the view and select a single or double cursor
from the Cursors | X Axis menu.

Vertical cursors are attached to a waveform group and will span all views within the group.
Multiple groups may have independent vertical cursors active simultaneously.

44 CHAPTER 7. WAVEFORM VIEWS

ngscopeclient - ox

LI

FANASARARARAWA
vV VY

Figure 7.5: Single vertical cursor

ngscopeclient - ox

el
P 4

RERE (S

AAMANANAD
YRvA VAV

Figure 7.6: Double vertical cursor

To place a single cursor, click on the waveform at the desired location. To place double cursors,
click at the starting location to place the first cursor then drag to the ending location and release
the mouse to place the second cursor. Once placed, either cursor can be moved by clicking on it
and dragging to the new location.

In the timeline each cursor will display its X-axis position. If both cursors are active, the delta
between them is shown. If the X axis uses time units, the frequency with period equal to the cursor
spacing is also shown.

When a cursor is active, a dockable pop-up dialog appears displaying the value of each waveform
in the group at the cursor location. If two cursors are active, both values as well as the difference
between them is shown (Fig. 7.6)

7.5. CURSORS AND MARKERS 45

7.5.2 Markers

A marker is a named location in absolute time intended for marking specific events (such as protocol
packets or glitches) which may need to be re-examined in the future. When new waveforms are
acquired, the marker remains attached to the same point in the old waveform and will disappear
until the old waveform is re-loaded from the history window. In Fig. 7.7, two of the three markers
are visible while the third is in a prior waveform.

Unlike vertical cursors, which are local to a single waveform group, cursors are global and will
appear at the same timestamp in all waveform groups. This allows an event of interest to be
examined in detail in one view, while a different view provides a global overview of the entire
acquisition or examines another event (Fig. 7.8).

Creating a marker automatically pins the active waveform so it will not be removed from history
as new data is acquired. The waveform cannot be un-pinned unless all markers are deleted first, or
the waveform itself is manually deleted.

Newly created markers will have default numeric names such as M1, M2, etc. This name can
be changed from the history window.

ngscopeclient - ox

3

Figure 7.7: Session with three markers, two on the currently displayed waveform and one on a prior
waveform

46

CHAPTER 7. WAVEFORM VIEWS

- ngscopeclient - ox
File Add Setu
by m

¥ Waveform Group 3

Figure 7.8: A single marker seen at multiple time scales in different views

Chapter 8

History

ngscopeclient saves a rolling buffer of previous waveforms in memory, allowing you to go back in
time and see previous state of the system being debugged. Clicking on a timestamp in the history
view (Fig. 8.1) pauses acquisition and loads the historical waveform data for analysis. History is
captured regardless of whether the window is visible or not.

¥ History

10 = |+ History Depth

Timestamp Pin Label

button A pressed
7:16:18.51520

:16:18.5543785095 button B pressed

Figure 8.1: Waveform history view

The history depth defaults to 10 waveforms, but can be set arbitrarily within the limits of
available RAM. Older waveforms beyond the history limit are deleted as new waveforms are acquired.
Any single waveform in history may also be deleted by right clicking on the line and selecting “delete"
from the menu.

8.1 Pinning

Interesting waveforms may be “pinned" in the history by checking the box in the “pin" column of
the history view. Pinned waveforms are guaranteed to remain in the history buffer even when new
waveforms arrive; only unpinned waveforms are eligible for automatic deletion to make space for
incoming data.

If a waveform contains markers (7.5.2), it is automatically pinned and cannot be unpinned unless
the marker (or entire waveform) is deleted. This prevents accidental loss of an important waveform:
if the event was important enough to mark and name, it is probably worth keeping around.

47

48 CHAPTER 8. HISTORY

8.2 Labeling

Arbitrary text names may be assigned to a waveform by clicking the corresponding cell in the
“label" column. Waveforms with a label are automatically pinned, since assigning a label implies
the waveform is important.

Chapter 9

Filter Graph Editor

9.1 Introduction

The filter graph editor allows complex signal processing pipelines to be developed in a graphical
fashion. It may be accessed from the Window | Filter Graph menu item.

The graph editor view (Fig. 9.1) shows nodes for every instrument channel, trigger, and filter
block in the current session. As new instruments, channels, and filter blocks are added to the
session, new nodes will automatically appear in the graph editor view. Nodes cannot overlap and
will automatically move out of the way if another node is dragged on top of them.

Filter Graph Editor

Hardware input

h - a data»——1 ~ din i y data-
- VV
/

datar
-]

Hardware input

Hardware input

..
S~ = din |_| l_l data »
d OO ¢C

Thires

Figure 9.1: Filter graph editor showing instrument channels and several processing blocks

49

50 CHAPTER 9. FILTER GRAPH EDITOR
9.2 Interaction

The view may be zoomed with the mouse wheel, or panned by dragging with the right mouse button,
to navigate large filter graphs which do not fit on a single screen at a reasonable zoom level. Right
clicking on a node opens a pop-up properties view (Fig. 9.2).

\
» Info

4 V V ¥ Display

clip_1

= din

Clip

[

Figure 9.2: Filter graph editor showing properties popup

Nodes display inputs at left and outputs at right. To connect two existing nodes, click on an
input or output port and drag to the port you wish to connect it to. An input can only connect
to one output at a time; if the destination already is connected to a different signal the previous
connection will be removed and replaced with the new one.

A tooltip with a green plus sign is displayed during dragging if the proposed connection is valid.
If the tooltip displays a red X instead, the connection is invalid (connecting two inputs, two outputs,
or an input and output of incompatible data types).

To create a new node, click on an input or output port and drag to an empty area of the canvas
(Fig. 9.3, Fig. 9.4). A context menu will appear, presenting a list of filters which can accept (if
dragging from an output) or produce (if dragging from an input) the desired data type. If dragging
from an input, the context menu will also include any currently unused instrument channels.

©

Hardware input

.~
1. din I_l I_l data »

d i L
Threshold

Figure 9.3: Filter graph editor dragging from an output to an empty area of the canvas

9.3. GROUPING 51

trend »

0 avg »

Hardware input

Figure 9.4: Filter graph editor dragging from an input to an empty area of the canvas

When a new node is added to the filter graph, each output channel will be automatically added
to an existing waveform view if a compatible one is present. If no compatible view is available, a
new view and/or group will be created.

Node title bars are color-coded to match the display color of the waveform trace, allowing easy
navigation between waveform views and the graph editor.

Each node also includes a caption stating the type of node (“hardware input", “hardware output",
or the name of the filter block) and, in most cases, an icon depicting the functionality of the block.!

9.3 Grouping

In order to better organize complex experimental setups, nodes may be organized in groups. Groups
cannot be nested.

To create a group, right click an unused area of the graph editor canvas and select “New Group"
from the context menu. This will spawn a new, empty group near the mouse cursor position.

The group will have an automatically generated name (Fig. 9.5) by default. This name may be
changed by right clicking on the group’s title bar and typing a new name in the pop-up.

INot all filters currently have icons. We are working with multiple artists to create more filter icons and welcome
additional contributions.

52 CHAPTER 9. FILTER GRAPH EDITOR

Filter Graph Editor

Hardware input
= din

a i \ data »
e VV
.'I Adc Clip

data » =
-]

Hardware input

[Group 30

Hardware input

Figure 9.5: Newly created node group

To add a node to a group, simply drag the node by its title bar and move it into the group
(Fig. 9.6). All paths from the node to the remainder of the filter graph will be routed through
“hierarchical ports" at the left and right edges of the group, reducing clutter. Nodes may be freely
moved around within the group to organize them, or dragged out of the group to remove them from
the group.

A group (together with its contents) may be moved by dragging the group’s title bar with the
left mouse button, or resized by dragging any of its corners. When a group is moved, it will push
other nodes or groups out of the way to prevent overlapping.

If not needed, a group can be deleted by selecting it with the left mouse button and pressing
the “delete" key. Deleting a group does not remove any nodes contained within it.

9.3. GROUPING

L]

Hardware input

= din

Hardware input

[Group 30

Figure 9.6: Groups containing several nodes with hierarchical ports

!VV\

clip

data »

93

54

CHAPTER 9. FILTER GRAPH EDITOR

Chapter 10

Transports

Libscopehal uses a “transport" object in order to pass commands and data to instruments, in order
to decouple the specifics of LXI, USBTMC, etc. from individual instrument drivers. This section
describes the supported transports and their usage and limitations.

Not all transports are possible to use with any given driver due to hardware limitations or
software/firmware quirks. For details on which transport(s) are usable with a particular instrument,
consult the documentation for that device’s driver.

10.1 gpib

SCPI over GPIB.

This transport takes up to four arguments: GPIB board index, primary address, secondary
address, and timeout value. Only board index and primary address are required. We currently
support using a single GPIB device per GPIB board (interface) in a ngscopeclient session. You
cannot currently access multiple devices in the same or across instances. Better support for multiple
instrument on a single board is planned.

NOTE: The current implementation of this driver only works on Linux, using the linux-gpib
library.

Example:

ngscopeclient myscope:keysightdca:gpib:0:7

10.2 lan

SCPI over TCP with no further encapsulation.
This transport takes two arguments: hostname/IP and port number.

If port number is not specified, uses TCP port 5025 (IANA assigned) by default. Note that
Rigol oscilloscopes use the non-standard port 5555, not 5025, so the port number must always be
specified when using a Rigol instrument.

Example:

ngscopeclient myscope:rigol:lan:192.0.2.9:5555

95

56 CHAPTER 10. TRANSPORTS

10.3 Ixi

SCPI over LXI VXI-11.

Note that due to the remote procedure call paradigm used by LXI, it is not possible to batch
multiple outstanding requests to an instrument when using this transport. Some instruments may
experience reduced performance when using LXI as the transport. Drivers which require command
batching may not be able to use LXI VXI-11 as the transport even if the instrument supports it.

Example:

ngscopeclient myscope:tektronix:1xi:192.0.2.9

10.4 null

This transport does nothing, and is used as a placeholder for development simulations or non-SCPI
instruments.

NOTE: Due to limitations of the current command line argument parsing code, an argument
must be provided to all transports, including this one, when connecting via the command line. Since
the argument is ignored, any non-empty string may be used.

Example:

ngscopeclient sim:demo:null:blah

10.5 socketcan

This transport provides a bridge for accessing the native Linux SocketCAN API from the scopehal
driver layer. When paired with the “socketcan" oscilloscope driver and a suitable CAN peripheral, it
allows ngscopeclient to be used as a CAN bus protocol analyzer. Since SocketCAN is a Linux-only
API, this transport is not available on other platforms.

This transport takes one argument: the device name (e.g. “can0")

10.6 twinlan

This transport is used by some Antikernel Labs oscilloscopes, as well as most of the bridge servers
used for interfacing libscopehal with USB oscilloscopes’ SDKs. It takes three arguments: host-
name/IP and two port numbers.

It uses two TCP sockets on different ports. The first carries SCPI text (as in the “lan" transport),
and the second is for binary waveform data.

If port numbers are not specified, the SCPI port defaults to the IANA standard of 5025, and
the data port defaults to 5026. If the SCPI port but not the data port is specified, the data port
defaults to the SCPI port plus one.

10.7 uart

SCPI over RS-232 or USB-UART.

10.8. USBTMC o7

This transport takes two arguments: device path (required) and baud rate (optional). If baud
rate is not specified, it defaults to 115200.

Example:

ngscopeclient myscope:rigol:uart:/dev/ttyUSB0:115200

10.8 usbtmc

SCPI over USB Test & Measurement Class protocol.
This transport takes one argument: the path to the usbtmc kernel device object.

NOTE: The current implementation of this driver only works on Linux. There is currently no
support for USBTMC on Windows (scopehal:301)

Example:

ngscopeclient myscope:siglent:usbtmc:/dev/usbtmc@

10.9 vicp

SCPI over Teledyne LeCroy Virtual Instrument Control Protocol.
This transport takes two arguments: hostname/IP and port number.
If port number is not specified, uses TCP port 1861 (IANA assigned) by default.

Example:

ngscopeclient myscope:lecroy:vicp:192.0.2.9

https://github.com/ngscopeclient/scopehal/issues/301

58

CHAPTER 10. TRANSPORTS

Chapter 11

BERT Drivers

This chapter describes all of the available drivers for bit error rate testers (BERTS)

11.1 MultiLANE

Device Family Driver Transport Notes

ML4039-BTP mlbert lan Use scopehal-mlbert-bridge

11.1.1 mlbert

This driver is intended to connect via the scopehal-mlbert-bridge server for network transparency
and does not directly link to the MultiLANE SDK or talk directly to the instrument. The bridge
requires a Windows PC since MultiLANE’s SDK is Windows only, however the libscopehal clientside
driver can run on any supported OS.

It was developed using a ML4039-BTP but may work with other similar models as well.

99

https://github.com/ngscopeclient/scopehal-mlbert-bridge
https://github.com/ngscopeclient/scopehal-mlbert-bridge

60

CHAPTER 11. BERT DRIVERS

Chapter 12

Function Generator Drivers

This chapter describes all of the available drivers for standalone function generators.

Function generators which are part of an oscilloscope are described in the Oscilloscope Drivers
section.

12.1 Rigol

Device Family Driver Transport Notes

DG4000 series rigol awg lan Only tested via lan transport, but USBTMC and
serial are available too

12.1.1 rigol awg

This driver supports all DG4000 series function / arbitrary waveform generators.

61

62

CHAPTER 12. FUNCTION GENERATOR DRIVERS

Chapter 13

Electronic Load Drivers

This chapter describes all of the available drivers for electronic loads.

13.1 Siglent

Device Family Driver Transport Notes

SDL1000X/X-E series siglent load lan Only tested via lan transport, but US-
BTMC and serial are available too

13.1.1 siglent load

This driver supports all SDL1000 family loads (SDL1020X-E, SDL.1020X, SDL1030X-E, SDL1030X).

63

64

CHAPTER 13. ELECTRONIC LOAD DRIVERS

Chapter 14

Multimeter Drivers

This chapter describes all of the available drivers for multimeters.

Multimeters which are part of an oscilloscope are described in the Oscilloscope Drivers section.

14.1 Rohde & Schwarz

Device Family Driver Transport Notes

HMC8012 rs_hmc8012 lan Only tested via lan transport, but USBTMC
and serial are available too

14.1.1 rs hmc8012

This driver supports the HMC8012 multimeter, which is the only device in the family.

65

66

CHAPTER 14. MULTIMETER DRIVERS

Chapter 15

Miscellaneous Drivers

This chapter describes all of the available drivers for miscellaneous instruments which do not fit in
any other category.

15.1 Generic

Device Family Driver Transport Notes

N/A csvstream Any

15.1.1 csvstream

This driver exposes the most recent line from a stream of comma-separated value (CSV) data as a
series of analog scalar channels.

It is primarily intended for extracting low rate I12C sensor readings and ADC values from an em-
bedded DUT, so that that these values may be plotted alongside multimeter /power supply readings
or other data coming from more conventional instrumentation.

The data may come from any supported transport, however it is expected that the most likely
scenario is either direct connection to a local serial port (“uart" transport), or a TCP socket con-
nected to either a remote UART using socat or an embedded TCP server (“lan" transport).

Data must be generally line oriented and UTF-8 or 7-bit ASCII encoded.

In order to enable csvstream data to share a UART also used by other traffic such as a debug
console or syslog, all lines must contain one of three magic prefixes as shown below. Any content
in the line before the prefix (such as a timestamp) is ignored.

Upon initial connection, the driver will have a single channel called “CH1". At any time, if
the number of fields in a received CSV line exceeds the current channel count, a new channel will
be created. If a partial line is received, the values in the missing columns are unchanged but the
channel will not be deleted.

e CSV-NAME: Contains channel name data. Example:
CSV-NAME, Temperature,3V3,RxLevel

e CSV-UNIT: Contains channel unit data (using the text encodings used by the libscopehal
Unit class). Example:

CSV-UNIT,’C,V,dBm

67

68

CHAPTER 15. MISCELLANEOUS DRIVERS

e CSV-UNIT: Contains channel value data. Example:
CSV-DATA,31.41,3.291,-59.1

Chapter 16

Oscilloscope Drivers

This chapter describes all of the available drivers for oscilloscopes and logic analyzers.

16.1 Agilent

Agilent devices support a similar similar SCPI command set across most device families.

Please see the table below for details of current hardware support:

Device Family Driver Transport Notes

DSO5000 series agilent lan Not recently tested, but should work.

DS06000 & MSO6000 series agilent lan Working. No support for digital chan-
nels yet.

DSO7000 & MSO7000 series agilent lan Untested, but should work. No sup-
port for digital channels yet.

EDUX1000 series agilent lan Untested but should be identical to
DSOX1200 but with lower sample
memory.

DSOX1200 series agilent lan Working. No support for wavegen yet.

MSOX-2000 series agilent lan

MSOX-3000 series agilent lan

16.1.1 agilent

Typical Performance (MS0O6034A, LAN)

Interestingly, performance sometimes gets better with more channels or deeper memory. Not sure

why.

69

70 CHAPTER 16. OSCILLOSCOPE DRIVERS

Channels Memory depth WFM/s

1 1K 66
4 1K 33
4 4K 33
1 40K 33
1 4K 22
1 20K 22
4 20K 22
1 100K 22
4 10K 17
4 40K 12
1 200K 11
1 400K 8

4 100K 6.5
4 200K 4

1 1M 3.7
4 400K 2.3
1 1M 1

4 1M 1

4 4M 0.2

Typical Performance (MSOX3104T, LAN)

Channels Memory depth WFM/s

1 2.5K 3.3
4 2.5K 2.5
1 2.5M 1.0
4 2.0M 0.5

16.2 Antikernel Labs

Device Family Driver Notes

Internal Logic Analyzer IP akila
BLONDEL Oscilloscope Prototype aklabs

16.2.1 akila

This driver uses a raw binary protocol, not SCPIL.

16.3. DEMO 71

Under-development internal logic analyzer analyzer core for FPGA design debug. The ILA uses
a UART interface to a host system. Since there’s no UART support in scopehal yet, socat must be
used to bridge the UART to a TCP socket using the “lan" transport.

16.2.2 aklabs

This driver uses two TCP sockets. Port 5025 is used for SCPI control plane traffic, and port 50101
is used for waveform data using a raw binary protocol.

16.3 Demo

The “demo" driver is a simulation-only driver for development and training purposes, and does not
connect to real hardware.

It ignores any transport provided, and is normally used with the “null" transport.

The demo instrument is intended to illustrate the usage of ngscopeclient for various types of
analysis and to aid in automated testing on computers which do not have a connection to a real
oscilloscope, and is not intended to accurately model the response or characteristics of real world
scope frontends or signals.

It supports memory depths of 10K, 100K, 1M, and 10M points per waveform at rates of 1, 5,
10, 25, 50, and 100 Gsps. Four test signals are provided, each with 10 mV of Gaussian noise and a
5 GHz low-pass filter added (although this can be disabled under the channel properties)

Test signals:

e 1.000 GHz tone

e 1.000 GHz tone mixed with a second tone, which sweeps from 1.100 to 1.500 GHz
e 10.3125 Gbps PRBS-31

e 1.25 Gbps repeating two 8B/10B symbols (K28.5 D16.2)

Device Family Driver Transport Notes

Simulator demo null

16.4 Digilent

Digilent oscilloscopes using the WaveForms SDK are all supported using the “digilent" driver in
libscopehal. This driver connects using the “twinlan" transport to a socket server which links
against the Digilent WaveForms SDK. This provides network transparency, and allows the Digilent
bridge server to be packaged separately for distribution and only installed by users who require it.

As of 2022-03-09, analog input channels on the Analog Discovery Pro and Analog Discovery
2 have been tested and are functional, however only basic edge triggering is implemented so far.
Analog inputs on other devices likely work, however only these two have been tested to date.

Analog outputs, digital inputs, and digital outputs are currently unimplemented, but are planned
to be added in the future.

https://github.com/ngscopeclient/scopehal-waveforms-bridge

72 CHAPTER 16. OSCILLOSCOPE DRIVERS

16.4.1 digilent

Device Family Driver Transport Notes

Electronics Explorer digilent twinlan Not tested, but probably works
Analog Discovery digilent twinlan Not tested, but probably works
Analog Discovery 2 digilent twinlan No digital channel support

No analog output support

Analog Discovery Pro digilent twinlan No digital channel support
No analog output support

Digital Discovery digilent twinlan No digital channel support,
so pretty useless for now

Typical Performance (ADP3450, USB -> LAN)

Channels Memory depth WFM/s

4 64K 25.8
2 64K 32.3
1 64K 33.0

16.5 DreamSource Lab

DreamSourceLabs oscilloscopes and logic analyzers supported in their fork of sigrok (“libsigrok4DSL”
distributed as part of their “DSView” software package) are supported through the “dslabs” driver
in libscopehal. This driver connects using the “twinlan” transport to a socket server which links
against libsigrok4DSL. This provides network transparency, and allows the DSLabs bridge server to
be packaged separately for distribution and only installed by users who require it.

As of 2022-03-22, a DSCope U3P100 and a DSLogic U3Prol6has been tested and works ade-
quately. Other products may work also, but are untested.

On DSCope: Only edge triggers are supported. ‘Any’ edge is not supported. “Ch0 && Chl”
and “Cho || Chl” trigger modes are not supported.

On DSLogic: Only edge triggers are supported. All edges are supported. There is currently no
way to configure a trigger on more than one channel. Serial / multi-stage triggers are not supported.

Known issues pending fixes/refactoring:

e Interleaved sample rates are not correctly reported in the timebase dialog (but are in the
waveform display)

e Trigger position is quantized to multiples of 1% of total capture

e Non-localhost performance, and responsiveness in general may suffer as a result of hacky flow
control on waveform capture

e DSLogic depth configuration is confusing and performance could be improved (currently only
buffered more is supported)

e DSLogic devices trigger even if pre-trigger buffer has not been filled, leading to a small pre-
trigger waveform in some cases

https://github.com/ngscopeclient/scopehal-sigrok-bridge

16.6. EEVENGERS 73

16.5.1 dslabs

Family / Device Driver Transport Notes

DScope U3P100 dslabs twinlan Tested, works
DSLogic U3P16 dslabs twinlan Tested, works
DSCope (others) dslabs twinlan Not tested, but probably works
DSLogic (others) dslabs twinlan Not tested, but probably works

Typical DSCope Performance (DSCope U3P100, USB3, localhost)

Channels Memory depth Sample Rate WFM/s Ul-unconstrained
WFM /s

2 1M 100MS/s 14 50

2 5M 500MS /s 4.5 14

1 5M 1GS/s 8.3 32

Typical DSLogic Performance (DSLogic U3Prol6, USB3, localhost)

Channels Memory depth Sample Rate WFM/s UlI-unconstrained
WFM /s

16 500k 100MS/s 16 44

16 500k 500MS/s 16 55

16.6 EEVengers

TODO: document WIP ThunderScope driver

16.7 Enjoy Digital

TODO (scopehal:79)

16.8 Generic

Drivers in this section are not specific to a particular manufacturer’s products and support a wide
variety of similar devices.

16.8.1 socketcan

This driver exposes the Linux SocketCAN API as a stream of CAN messages which can be displayed
as-is or used as input to other filter graph blocks. When paired with the “socketcan" transport and
a suitable CAN peripheral, it allows ngscopeclient to be used as a CAN bus protocol analyzer. Since
SocketCAN is a Linux-only API, this driver is not available on other platforms.

https://github.com/ngscopeclient/scopehal/issues/79

74 CHAPTER 16. OSCILLOSCOPE DRIVERS
16.9 Hantek

TODO (scopehal:26)

16.10 Keysight

Keysight devices support a similar similar SCPI command set across most device families. Many
Keysight devices were previously sold under the Agilent brand and use the same SCPI command
set, so they are supported by the “agilent" driver.

Please see the table below for details of current hardware support:

16.10.1 agilent

Device Family Driver Notes
MSOX-2000 series agilent
MSOX-3000 series agilent
MSOX-3000T series agilent

16.10.2 keysightdca

A driver for the Keysight/Agilent/HP DCA series of equivalent-time sampling oscilloscopes.

Device Family Driver Notes

86100A keysightdca

16.11 Pico Technologies

Pico oscilloscopes all have slightly different command sets, but are supported using the “pico" driver
in libscopehal. This driver connects via a TCP socket to a socket server scopehal-pico-bridge which
connects to the appropriate instrument using Pico’s binary SDK.

Device Family Driver Notes

3000D series pico Early development, incomplete

6000E series pico

https://github.com/ngscopeclient/scopehal/issues/26
https://github.com/ngscopeclient/scopehal-pico-bridge

16.12. RIGOL 75

16.11.1 pico

Typical Performance (6824E, LAN)

Channels Memory depth WFM /s

8 1M 15.2

4 1M 30.5

2 1M 64.4

1 10M 12.2

1 50M 3.03
16.12 Rigol

Rigol oscilloscopes have subtle differences in SCPI command set, but this is implemented with
quirks handling in the driver rather than needing different drivers for each scope family.

Device Family Driver Notes

DS1100D/E rigol
DS1000Z rigol
MSO5000 rigol

16.12.1 rigol

Typical Performance (MSO5000 series, LAN)

Channels Memory depth WFM /s

4 10K 0.96
4 100K 0.91
4 1M 0.59
4 10M 0.13
1 100M 0.0601
4 25M 0.0568
2 50M 0.0568

16.13 Rohde & Schwarz

16.13.1 rs

There is partial support for RTM3000 (and possibly others, untested) however it appears to have
bitrotted.

TODO (scopehal:59)

https://github.com/ngscopeclient/scopehal/issues/59

76 CHAPTER 16. OSCILLOSCOPE DRIVERS

16.13.2 rs_rto6

This driver supports the newer RTOG6 family scopes (and possibly others, untested).

16.14 Saleae

TODO (scopehal:16)

16.15 Siglent

A driver for SDS2000X+ is available in the codebase which has been developed according to Siglent
offical documentation (Programming Guide PGO1-E11A). This driver should be functional across the
next generation’” SDS2000X+, SDS5000X and SDS6000A scopes . It has been primarily developed
using the SDS2000X+. Some older generation scopes are supported as well.

Digital channels are not supported on any scope yet, due to lack of an MSO probe to test with.
Many trigger types are not yet supported.

Device Family Driver Transport Notes

SDS1000X-E series siglent lan Initialises, triggers and downloads waveforms.
More testing needed

SDS2000X-E series siglent lan Initialises, triggers and downloads waveforms.
More testing needed

SDS2000X+ series siglent lan Basic functionality complete.

SDS2000X HD series siglent lan Tested and works well on SDS2354x HD.

SDS5000X series siglent lan Initialises, triggers and downloads waveforms.
More testing needed

SDS6000A series siglent lan Tested and works well on SDS6204A. 10/12

bit models NOT supported, but unavailable
for dev (not sold in western markets).

Typical Performance (SDS2104X-+, LAN)

Channels Memory depth WFM/s

1 5-100K 2.3
2 5-100K 1.6
3 5-100K 1.2
4 5-100K 1

1 10M 0.5
2-4 10M 0.15

These figures were obtained from a SDS2104X+ running firmware version 1.3.7R5. Differ-
ent scopes and software revisions may vary. This series of scopes support sample depths up to
100MPoints, but depths beyond 10MPoints require a different software interface and are likely to
be extremely slow, so have not yet been implemented.

https://github.com/ngscopeclient/scopehal/issues/16

16.16. TELEDYNE LECROY / LECROY 7

25
2
15
‘L";'\. —1
g 2
P~ 3
1
1
05
0
10 100 1K 10K 100K ™M 10M

Depth (points/channel)

Figure 16.1: Siglent sample speed for various combinations of depth and channels

16.16 Teledyne LeCroy / LeCroy

Teledyne LeCroy (and older LeCroy) devices use the same driver, but two different transports for
LAN connections.

While all Teledyne LeCroy / LeCroy devices use almost identical SCPI command sets, Windows
based devices running XStream or MAUI use a custom framing protocol (“vicp") around the SCPI
data while the lower end RTOS based devices use raw SCPI over TCP (“lan").

Please see the table below for details on which configuration to use with your hardware.

Device Family Driver Transport Notes

DDA lecroy vicp Tested on DDA5000A series

HDO lecroy vicp Tested on HDOY000 series

LabMaster lecroy vicp Untested, but should work for 4-channel setups
MDA lecroy vicp Untested, but should work

SDA lecroy vicp Tested on SDA 8Zi and 8Zi-A series

T3DSO 777 777 Untested

WaveAce 777 777 Untested

WavelJet 777 777 Untested

WaveMaster lecroy vicp Same hardware as SDA /DDA

WaveRunner lecroy vicp Tested on WaveRunner Xi, 8000, and 9000 series

WaveSurfer lecroy vicp Tested on WaveSurfer 3000 series

78 CHAPTER 16. OSCILLOSCOPE DRIVERS

16.16.1 lecroy

This is the primary driver for MAUI based Teledyne LeCroy / LeCroy devices.

This driver has been tested on a wide range of Teledyne LeCroy / LeCroy hardware. It should
be compatible with any Teledyne LeCroy or LeCroy oscilloscope running Windows XP or newer
and the MAUI or XStream software.

Typical Performance (HD0O9204, VICP)

Channels Memory depth WFM /s

1 100K >50

1 400K 29 - 35

2 100K 30 - 40

4 100K 17-21

1 2M 9-11

1 10M 22-26

4 1M 5.2-6.5

1 64M 0.41 - 0.42
2 64M 0.21 - 0.23
4 64M 0.12-0.13

Typical Performance (WaveRunner 8404M-MS, VICP)

Channels Memory depth WFM/s

1 80K 35 - 45
2 80K 35 - 45
2 800K 16 - 17
2 8M 3.1-32

16.16.2 lecroy fwp

This is a special performance-enhanced extension of the base “lecroy" driver which takes advantage
of the FastWavePort feature of the instrument to gain high speed access to waveform data via
shared memory. Waveforms are pulled from shared memory when a synchronization event fires,
then pushed to the client via a separate TCP socket on port 1862.

On low latency LANS, typical performance increases observed with SDA 8Zi series instruments
are on the order of 2x throughput vs using the base driver downloading waveforms via SCPI. On
higher latency connections such as VPNs, the performance increase is likely to be even higher
because the push-based model eliminates the need for polling (which performs increasingly poorly
as latency increases).

To use this driver, your instrument must have the XDEV software option installed and the
scopehal-fwp-bridge server application running. If the bridge or option are not detected, the driver
falls back to SCPI waveform download and will behave identically to the base “lecroy" driver.

https://github.com/ngscopeclient/scopehal-fwp-bridge

16.17. TEKTRONIX 79

There are some limitations to be aware of with this driver:

Maxmimum memory depth is limited to no more than 40M samples per channel, regardless
of installed instrument memory. This is an architectural limitation of the FastWavePort API;
the next generation FastMultiWavePort API eliminates this restriction however scopehal-fwp-
bridge does not yet support it due to poor documentation.

MSO channels are not supported, because neither Fast WavePort nor FastMultiWavePort pro-
vide shared memory access to digital channel data. There is no known workaround for this
given current instrument APIs.

A maximum of four analog channels are supported even if the instrument actually has eight.
There are no major technical blockers to fixing this under FastWavePort however no 8-channel
instruments are available to the developers as of this writing, so there is no way to test potential
fixes. FastMultiWavePort has a limit of four channels per instance, but it may be possible to
instantiate multiple copies of the FastMultiWavePort block to work around this.

Math functions F9-F12 are used by the FastWavePort blocks and cannot be used for other
math functions.

16.17 Tektronix

This driver is being primarily developed on a MSO64. It supports SCPI over LXI VXI-11 or TCP
sockets.

The hardware supports USBTMC, however waveform download via USBTMC does not work

with libscopehal for unknown reasons.

Device Family Driver Transport Notes

MSO5 series tektronix lan, Ixi

MSOG6 series tektronix lan, Ixi

16.17.1 Note regarding “lan" transport on MSO5/6

The default settings for raw SCPI access on the MSOG6 series use a full terminal emulator rather
than raw SCPI commands. To remove the prompts and help text, go to Utility | I/O, then under
the Socket Server panel select protocol “None" rather than the default of “Terminal".

Typical Performance (MSO64, LXI, embedded OS)

Channels Memory depth WFM/s

1 50K 10.3 - 11.4
2 50K 6.7- 7.2
4 50K 5.1-5.3
1 500K 8.7-9.5
4 500K 3.8-39

80 CHAPTER 16. OSCILLOSCOPE DRIVERS
16.18 Xilinx

TODO (scopehal:40)

https://github.com/ngscopeclient/scopehal/issues/40

Chapter 17

SDR Drivers

This chapter describes all of the available drivers for software-defined radios.

17.1 Ettus Research

Device Family Driver Transport Notes

USRP uhd twinlan

17.1.1 uhd

This driver connects via a TCP socket to a socket server scopehal-uhd-bridge which connects to the
appropriate instrument using the UHD API.

This provides network transparency for USB-attached instruments, as well as a license boundary
between the BSD-licensed libscopehal core and the GPL-licensed UHD API.

17.2 Microphase

The AntSDR running antsdr uhd firmware is supported by the “uhd" driver for Ettus Research
SDRs. There is currently no support for the IIO firmware.

81

https://github.com/ngscopeclient/scopehal-uhd-bridge

82

CHAPTER 17. SDR DRIVERS

Chapter 18

Spectrometer Drivers

This chapter describes all of the available drivers for optical (UV/VIS/IR) spectrometers.

18.1 ASEQ Instruments

Device Family Driver Transport Notes

LR1 aseq twinlan

18.1.1 aseq

TODO: write stuff here

83

84

CHAPTER 18. SPECTROMETER DRIVERS

Chapter 19

Power Supply Drivers

This chapter describes all of the available drivers for power supplies.

19.1 GW Instek

Device Family Driver Transport Notes

GPD-X303S series gwinstek gpdx303s uart 9600 Baud default. Tested with
GPD-3303S. No support for tracking
modes yet.

19.1.1 gwinstek gpdx303s

Supported models should include GPD-2303S, GPD-3303S, GPD-4303S, and GPD-3303D.

19.2 Rigol

Device Family Driver Transport Notes

DP832, DP832A rigol dp8xx wuart, usbtmec, lan No support for tracking modes yet.

19.2.1 rigol dp8xx

This driver supports the DP832 and DP832A.

19.3 Rohde & Schwarz

Device Family Driver Transport Notes

HMCB804x series rs _hme804x uart, usbtme, lan No support for tracking modes yet.

85

86 CHAPTER 19. POWER SUPPLY DRIVERS

19.3.1 rs_hmc804x

This driver should support the HMC8041, HMC8042, and HMC8043 but has only been tested on
the HMC8042.

19.4 Siglent

Device Family Driver Transport Notes
SPD3303X series siglent spd lan Tested with SPD3303X-E

19.4.1 siglent spd

Supported models should include SPD3303X, SPD3303X-E.

NOTE: Channel 3 of the SPD3303x series does not support software voltage /current adjustment.
It has a fixed current limit of 3.2A, and output voltage selectable to 2.5, 3.3, or 5V via a mechanical
switch. While channel 3 can be turned on and off under software control, there is no readback
capability whatsoever for channel 3 in the SCPI API.

As a result - regardless of actual hardware state - the driver will report channel 3 as being in
constant voltage mode. Additionally, the driver will report channel 3 as being off until it is turned
on by software. Once the output has been turned on, the driver will track the state and report a
correct on/off state as long as no front panel control buttons are touched.

Chapter 20

RF Generator Drivers

This chapter describes all of the available drivers for RF synthesizers, vector signal generators, and
similar devices.

20.1 Siglent

Device Family Driver Transport Notes

SSG3000X Unknown Unknown May be compatible with the siglent ssg driver,
but not tested

SSGH000A Unknown Unknown May be compatible with the siglent ssg driver,
but not tested

SSG5H000X siglent ssg lan Only tested via lan transport, but USBTMC

and serial are available too

20.1.1 siglent ssg

This driver was developed on a SSG5060X-V and should support the other models in the SSG5000X
family (SSG5040X, SSG5060X, and SSG5040X-V). It is unknown whether it will function at all with
the SSG3000X or 5000A families in its current state; additional development will likely be needed
for full support.

87

88

CHAPTER 20. RF GENERATOR DRIVERS

Chapter 21

VNA Drivers

This chapter describes all of the available drivers for vector network analyzers.

21.1 Copper Mountain

Device Family Driver Transport Notes

Planar coppermt lan Not tested, but docs say same command set
SHxxx coppermt lan Tested on S5180B

S7530 coppermt lan Not tested, but docs say same command set
SCh0xx coppermt lan Not tested, but docs say same command set
Clxxx coppermt lan Not tested, but docs say same command set
C2xxx coppermt lan Not tested, but docs say same command set
Clxxx coppermt lan Not tested, but docs say same command set
Mbxxx coppermt lan Not tested, but docs say same command set

21.1.1 coppermt

This driver supports the S2VNA and S4VNA software from Copper Mountain.

As of this writing, only 2-port VNAs are supported. 4-port VNAs will probably work using only
the first two ports, but this has not been tested.

21.2 Pico Technology

Device Family Driver Transport Notes
PicoVNA 106 picovna lan
PicoVNA 108 picovna lan

89

90 CHAPTER 21. VNA DRIVERS

21.2.1 picovna

This driver supports the PicoVINA 5 software from Pico Technology. The older PicoVNA 3 software
does not provides a SCPI interface and is not compatible with this driver.

Chapter 22

Triggers

22.1 'Trigger Properties

The Setup / Trigger menu opens the trigger properties dialog (Fig. 22.1).

The Trigger Type box allows the type of trigger to be chosen. The list of available triggers
depends on the instrument model and installed software options.

The Trigger Offset field specifies the time from the start of the waveform to the trigger point.
Positive values move the trigger later into the waveform, negative values introduce a delay between
the trigger and the start of the waveform. !

Trigger properties B
Scope mso6 (MSO64, serial C013151)
Trigger Type ‘ Edge
Trigger Offset | 1ps

din ‘CHZ

Edge ‘ Rising

Level [125.5248 mv

Figure 22.1: Trigger properties dialog

The remaining settings in the trigger properties dialog depend on the specific trigger type chosen.

22.2 Serial Pattern Triggers

All serial pattern triggers take one or two pattern fields, a radix, and a condition.

For conditions like “between" or “not between" both patterns are used, and no wildcards are
allowed. For other conditions, only the first pattern is used.

Patterns may be specified as ASCII text, hex, or binary. “Don’t care" nibbles/bits may be
specified in hex/binary patterns as “X", for example “3fx8" or “1100010xxx1".

IThis is a different convention than most oscilloscopes, which typically measure the trigger position from the
midpoint of the waveform. Since ngscopeclient decouples the acquisition length from the UI zoom setting, measuring
from the midpoint makes little sense as there are no obvious visual cues to the midpoint’s location.

91

92 CHAPTER 22. TRIGGERS

22.3 Dropout

Triggers when a signal stops toggling for a specified amount of time.

22.3.1 Inputs

Signal name Type Description

din Analog or digital Input signal

22.3.2 Parameters

Parameter name Type Description

Edge Enum Specifies the polarity of edge to look for (rising or falling)

Dropout Time Int Dropout time needed to trigger

Level Float Voltage threshold

Reset Mode Enum Specifies whether to reset the timer on the opposite edge
22.4 Edge

Triggers on edges in the signal.

Edge types “rising" and “falling" are self-explanatory. “Any" triggers on either rising or falling
edges. “Alternating" is a unique trigger mode only found on certain Agilent/Keysight oscilloscopes,
which alternates each waveform between rising and falling edge triggers.

22.4.1 Inputs

Signal name Type Description

din Analog or digital Input signal

22.4.2 Parameters

Parameter name Type Description

Edge Enum Specifies the polarity of edge to look for
Level Float Voltage threshold

22.5 Glitch

TODO: This is supported on at least LeCroy hardware, but it’s not clear how it differs from pulse
width.

22.6. PULSE WIDTH

22.6 Pulse Width

93

Triggers when a high or low pulse meeting specified width criteria is seen.

Signal name Type Description
din Analog or digital Input signal
22.6.1 Parameters
Parameter name Type Description

Condition Enum Match condition (greater, less, between, or not between)
Edge Enum Specifies the polarity of edge to look for
Level Float Voltage threshold
Lower Bound Int Lower width threshold
Upper Bound Int Upper width threshold
22.7 Runt

Triggers when a pulse of specified width crosses one threshold, but not a second.

Signal name Type

Description

din Analog

Input signal

22.7.1 Parameters

Parameter name Type

Description

Condition Enum Match condition (greater, less, between, or not between)
Edge Slope Enum Specifies the polarity of edge to look for

Lower Interval Int Lower width threshold

Lower Level Float Lower voltage threshold

Upper Interval Int Upper width threshold

Upper Level Float Upper voltage threshold

22.8 Slew Rate

Triggers when an edge is faster or slower than a specified rate.

Signal name Type

Description

din Analog

Input signal

94 CHAPTER 22. TRIGGERS

22.8.1 Parameters

Parameter name Type Description

Condition Enum Match condition (greater, less, between, or not between)
Edge Slope Enum Specifies the polarity of edge to look for
Lower Interval Int Lower width threshold
Lower Level Float Lower voltage threshold
Upper Interval Int Upper width threshold
Upper Level Float Upper voltage threshold
22.9 UART

Triggers when a byte or byte sequence is seen on a UART.

22.9.1 Inputs

Signal name Type Description

din Analog or digital Input signal

22.9.2 Parameters

Parameter name Type Description

Bit Rate Int Baud rate

Condition Enum Match condition

Level Float Voltage threshold

Parity Mode Enum Odd, even, or no parity

Pattern String First match pattern

Pattern 2 String Second match pattern

Polarity Enum Idle high (normal UART) or idle low (RS232)
Radix Enum Radix for the patterns

Stop Bits Float =~ Number of stop bits

Trigger Type Enum Match data pattern or parity error

22.10 Window

Triggers when a signal goes above or below specified thresholds.

The available configuration settings for this trigger vary from instrument to instrument.

Signal name Type Description

din Analog Input signal

22.10. WINDOW

22.10.1 Parameters

Parameter name Type Description

Condition Enum Specifies whether to trigger on entry or exit from the window,
and whether to trigger immediately or after a time limit.

Edge Enum Specifies which edge of the window to trigger on

Lower Level Float Lower voltage threshold

Upper Level Float Upper voltage threshold

95

96

CHAPTER 22. TRIGGERS

Chapter 23

Filters

23.1 Introduction

23.1.1 Key Concepts

ngscopeclient and libscopehal are based on a “filter graph" architecture internally. The filter graph
is a directed acyclic graph with a set of source nodes (waveforms captured from hardware, loaded
from a saved session, or generated numerically) and sink nodes (waveform views, protocol analyzer
views, and statistics) connected by edges representing data flow.

A filter is simply an intermediate node in the graph, which takes input from zero or more
waveform nodes and outputs a waveform which may be displayed, used as input to other filters,
or both. A waveform is a series of data points which may represent voltages, digital samples, or
arbitrarily complex protocol data structures.

As a result, there is no internal distinction between math functions, measurements, and protocol
decodes, and it is possible to chain them arbitrarily. Consider the following example:

e Two analog waveforms representing serial data and clock are acquired

e Each analog waveform is thresholded, producing a digital waveform

e The two digital waveforms are decoded as I2C, producing a series of packets

The I?C packets are decoded as writes to a serial DAC, producing an analog waveform

e A moving average filter is applied to the analog waveform

e A measurement filter finds the instantaneous frequency of each cycle of the DAC output

In this document we use the term “filter" consistently to avoid ambiguity.

23.1.2 Conventions
A filter can take arbitrarily many inputs (vector inputs), arbitrarily many parameters (scalar inputs),
and outputs a signal (vector output).

If the output signal is a multi-field type (as opposed to a single scalar, e.g. voltage, at each
sample) the “Output Signal" section will include a table describing how various types of output data
are displayed.

97

98

CHAPTER 23. FILTERS

All filters with complex output use a standardized set of colors to display various types of data
fields in a consistent manner. These colors are configurable under the Appearance / Decodes

preferences category.

Color name

Use case Default Color

Address

Memory addresses #4100

Checksum Bad

Incorrect CRC/checksum #0000

Checksum OK

Valid CRC/checksum

Control Miscellaneous control data
Data User data

Error Malformed /unreadable data
Idle Inter-frame gaps

Preamble Preamble/sync words

23.2. 128B/130B 99
23.2 128b/130b

Decodes the 128b/130b line code used by PCle gen 3/4/5. This filter performs block alignment and
descrambling, but no decoding of block contents.

128b/130b, as a close relative of 64b/66b, is a serial line code which divides transmitted data
into 128-bit blocks and scrambles them with a LFSR, then appends a 2-bit type field (which is not
scrambled) to each block for synchronization. Block synchronization depends on always having an
edge in the type field so types 2’b00 and 2'b11 are disallowed.

For PCle over 128b/130b, block type 2'b01 contains 128 bits of upper layer protocol data while
block type 2’b10 contains an ordered set.

Note that this filter only performs block alignment and descrambling. No decoding or parsing
is applied to the 128-bit blocks, other than searching for skip ordered sets (beginning with Oxaa)
and using them for scrambler synchronization.

FFE(TX0)

aael17bocd
1) gical Id|

I\IIII\I lll.|.|“.. e A (A ‘ |||M| | ||\ lul“l‘ hk |“li

Figure 23.1: Example 128b/130b decode

28b130b_9(TX0)

N

/

|
/

/

l PCleGen345Logical_2(TX0,TX1) PCleDataLink_8(TX0,TX1) PCleTransport 8(TX0,TX1)
i"‘ruwl data » * logical data » —— * link data »

128b130b_8(TX1)

Figure 23.2: Example filter graph using 128b/130b to decode a 2-lane PCle gen3 link

23.2.1 Inputs

Signal name Type Description
data Digital Serial 128b/130b data line

clk Digital DDR bit clock, typically generated by use of the Clock Recovery
(PLL) filter on the input data.

23.2.2 Parameters

This filter takes no parameters.

100 CHAPTER 23. FILTERS

23.2.3 Output Signal

The 128B/130B filter outputs a time series of 128B/130B sample objects. These consist of a
control /data flag and a 128-bit data block.

Stream name Type Description

data Sparse protocol Output decode

Type Description Color Format
Ordered set Block with type 2’b10 %032x
Data Block with type 2'b01 %032x

Error Block with type 2’b00 or 2’b11 %032x

23.3. 64B/66B 101

23.3 64b/66b

Decodes the 64/66b line code used by 10Gbase-R and other serial protocols, as originally specified
in IEEE 802.3 clause 49.2.

64b /66D is a serial line code which divides transmitted data into 64-bit blocks and scrambles
them with a LFSR, then appends a 2-bit type field (which is not scrambled) to each block for

synchronization. Block synchronization depends on always having an edge in the type field so types
2'b00 and 2’b11 are disallowed.

Note that this filter only performs block alignment and descrambling. No decoding is applied to
the 64-bit blocks, as different upper-layer protocols assign different meaning to them. In 10Gbase-R,
type 2’b01 denotes “64 bits of upper layer data" and type 2'b10 denotes “8-bit type field and 56
bits of data whose meaning depends on the type", however this is not universal and some other
protocols use these fields for different purposes.

485 ns

Ny Ty g AN ARy LU I
[T N 1 | _

Il
[T I TI0

10GBaseR(64b66b (Threshold(C4)))
i 64 Ethemnet - 10GBaseR

a

data '-:"“
,\i
r ClockRec(C4)
\)
~ . at

——

Figure 23.4: Example filter graph using 64b/66b to decode a 10Gbase-R signal

23.3.1 Inputs

Signal name Type Description

data Digital Serial 64b/66b data line

clk Digital DDR bit clock, typically generated by use of the Clock Recovery
(PLL) filter on the input data.

23.3.2 Parameters

This filter takes no parameters.

102 CHAPTER 23. FILTERS

23.3.3 Output Signal

The 64B/66B filter outputs a time series of 64B/66B sample objects. These consist of a control /data
flag and a 64-bit data block.

Stream name Type Description

data Sparse protocol Output decode

Type Description Color Format
Control Block with type 2’b10 %016x
Data Block with type 2’b01 %016x

Error Block with type 2'b00 or 2’b11 %016x

23.4. 8B/10B (IBM) 103
23.4 8B/10B (IBM)

Decodes the standard 8b/10b line code used by SGMII, 1000base-X, DisplayPort, JESD204, PCle
gen 1/2, SATA, USB 3.0, and many other common serial protocols.

8b/10b is a dictionary based code which converts each byte of message data to a ten-bit code.
In order to maintain DC balance and limit run length to a maximum of five identical bits in a row,
all 8-bit input codes have one of:

e One legal coding, with exactly five zero bits

e Two legal codings, one with four zero bits and one with six

The transmitter maintains a “running disparity" counter and chooses the appropriate coding for
each symbol to ensure DC balance. There are twelve legal codes which are not needed for encoding
data values; these are used to encode frame boundaries, idle/alignment sequences, and other control
information.

Figure 23.6: Example filter graph using 8b/10b to decode a differential 1000base-X link

23.4.1 Inputs

Signal name Type Description

data Digital Serial 8b/10b data line

clk Digital DDR bit clock, typically generated by use of the Clock Recovery
(PLL) filter on the input data.

104

CHAPTER 23. FILTERS

23.4.2 Parameters

Parameter name Type Description

Comma Search Window Integer Number of unit intervals to search when performing

comma alignment. A larger window increases the proba-
bility of a correct lock, but significantly slows down the
decode.

Display Format Enum Dotted (K28.5 D21.5): displays the 3b4b and 5b6b

code blocks separately, with K or D prefix.
Hex (K.bc b5): displays data as hex byte values and
control codes with a K prefix.

23.4.3 Output Signal

The 8B/10B filter outputs a time series of 8B/10B sample objects. These consist of a control/data
flag, the current running disparity, and a byte of data.

Stream name Type Description

data Sparse protocol Output decode

Type Description Color Format

Control Control codes K%d.%d+ or K%02x
Data Upper layer protocol data D%d.%d+ or %02x
Error Malformed data Error ERROR

23.5. 8B/10B (TMDS) 105
23.5 8B/10B (TMDS)

Decodes the 8-to-10 Transition Minimized Differential Signalling line code used in DVI and HDMI.

Like the 8B/10B (IBM) line code, TMDS is an 8-to-10 bit serial line code. TMDS, however,
is designed to minimize the number of toggles in the data stream for EMC reasons, rendering it
difficult to synchronize a CDR, PLL to. As a result, HDMI and DVT provide a reference clock at the
pixel clock rate (1/10 the serial data bit rate) along with the data stream to provide synchronization.

17.325 ps 7.35 ps 17.375 ps 17.4 ps

A f . \

' i il

S 1| CTLO CTLD CTLo Bd

A AR R N

Figure 23.7: Example TMDS decode

Threshold 1 8b10bTMDS_1
6 data » » din [_l l_l data»—+———— 1, 4ata data »
I = S I

-
Hardware input 8b/10b (TMDS)

Figure 23.8: Example filter graph decoding TMDS from a single-ended input. Note that this
example recovers the clock from the input signal rather than multiplying up the reference clock.

23.5.1 Inputs

Signal name Type Description
data Digital Serial TMDS data line

clk Digital DDR bit clock, typically generated by use of the Clock Recovery
(PLL) filter on the input data. Note that this is 5x the rate of the
pixel clock signal.

23.5.2 Parameters

Parameter name Type Description

Lane Number Integer Lane number within the link (0-3)

106 CHAPTER 23. FILTERS

23.5.3 Output Signal

The TMDS filter outputs a time series of TMDS sample objects. These consist of a type field and
a byte of data.

The output of the TMDS decode is commonly fed to the DVI or HDMI protocol decoders.

Stream name Type Description

data Sparse protocol Output decode

Type Description Color Format
Control Control codes (H/V sync) CTL%d
Data Pixel /island data %02x
Error Malformed data ERROR

Guard band HDMI data/video guard band [SEEEREIES GB

23.6. AC COUPLE 107

23.6 AC Couple

Automatically removes a DC offset from an analog waveform by subtracting the average of all
samples from each sample.

This filter should only be used in postprocessing already acquired data, or other situations in
which AC coupling in the hardware (via an AC coupled probe, or coaxial DC block) is not possible.

| “J “nlll!nh...u._.l_..

.|I.Mll.|l|.

=30 m¥

Figure 23.9: Example input and output of the AC Couple filter

108 CHAPTER 23. FILTERS

ACCouple 1

..a-"/ll

o= din gata =
: /‘\/‘

Hardware input AC Couple

Figure 23.10: Example filter graph AC coupling an input waveform

23.6.1 Inputs

Signal name Type Description

din Analog Input waveform

23.6.2 Parameters

This filter takes no parameters.

23.6.3 Output Signal

This filter outputs an analog waveform with identical configuration (sparse or uniform) and sample
rate to the input, vertically shifted to center the signal at zero volts.

Stream name Type Description

data Analog Output decode

23.7. AC RMS 109

23.7 AC RMS

Measures the Root Mean Square value of the waveform after removing any DC offset. The DC
offset is calculated by averaging all samples in the waveform.

ACRMS 1 trend

Figure 23.11: Example usage of the AC RMS filter on a QAM modulated signal

ACRMS_1

——1* din + trend »

a W |_', -
— =

Hardware input

Figure 23.12: Example filter graph measuring RMS value of a waveform

23.7.1 Inputs

Signal name Type Description

din Analog Input waveform

23.7.2 Parameters

This filter takes no parameters.

110 CHAPTER 23. FILTERS

23.7.3 Output Signal

This filter has two output streams.

Stream name Type Description

trend Sparse analog One sample per cycle of the input waveform containing the
RMS value across that cycle

avg Scalar RMS value across the entire waveform

23.8. ADD 111

23.8 Add

This filter adds two inputs. Either input may be a vector (waveform) or scalar.

370.5 ps 370.6 us 370.7 us 370.8 ps 370.9 ps

Al S AV R VR TAN A Y

L A 'A' AV VALV AN A jﬂ'l, AL T‘Av‘

Figure 23.13: Example usage of adding two analog waveforms

data »
Hardware input \
a data »

@

Hardware input

Figure 23.14: Example filter graph adding two analog waveforms

23.8.1 Inputs

Signal name Type Description

Analog waveform or scalar First input waveform

b Analog waveform or scalar Second input waveform

112 CHAPTER 23. FILTERS

23.8.2 Parameters

This filter takes no parameters.

23.8.3 Output Signal

If both inputs are vectors, this filter outputs a waveform containing the pairwise sum; i.e. sample
i of the output is a[i] + b[i]. No resampling is performed on the inputs so incorrect or unexpected
results may occur if they do not share the same timebase. Both inputs must be the same type (both
sparse or both uniform), mixing sparse and uniform (even if the sample timestamps are the same)
is not allowed.

If both inputs are scalars, this filter outputs their sum.

If one input is a vector and the other is a scalar, this filter outputs the sum of the scalar and
each element of the waveform, i.e. sample i of the output is a+ b[i] for the scalar + vector case and
ali] + b for the vector + scalar.

Stream name Type Description

data Analog One sample per cycle of the input waveform containing the sum of
the a and b inputs at that time

23.9. AREA UNDER CURVE 113

23.9 Area Under Curve

TODO: needs to be updated when we port to scalar interface

Measures the area under the curve by integrating the data points. By default, area measured
above ground is considered as positive and area measured below the ground is considered nega-
tive. The negative area can also be considered as positive by changing a filter parameter. The
measurement can be performed on the full record or on each cycle.

200 ms 400 ms. 600 ms 800 ms

159.7 mVs
139.7 mVs
119.7 mVs
99.7 mVs
79.7 mVs
59.7 mVs
39.7 mVs

19.7 mvs

- e 85w
True Area (Integr

Figure 23.15: Example of true area under the curve measurement (Integral)

400 ms 600 ms

Sine : 100 kS|
100 kS/s

280 mVs

180 mVs

-120 mVs

Absolute Area

-220 mVs

Figure 23.16: Example of absolute area under the curve measurement

114 CHAPTER 23. FILTERS

380 mVs
280 mVs
180 mVs

80 mVs
-20 mVs
-120 mVs

-220 mVs

Per Cycle Absolute Area

Figure 23.17: Example of per-cycle absolute area under the curve measurement

23.9.1 Inputs

Signal name Type Description

din Analog Input waveform

23.9.2 Parameters

Parameter name Type Description

Measurement Type Enum Full Record: Measure the area of entire waveform
Per Cycle: Measure the area of each cycle in the waveform

Area Type Enum True Area: Consider area below ground as negative
Absolute Area: Consider area below ground as positive

23.9.3 Output Signal

For full record measurement, this filter outputs a waveform indicating total area measured till the
time on the waveform. For per cycle measurement, this filter outputs waveform representing area
of each cycle.

23.10. ADL5205 115
23.10 ADL5205

Decodes SPI data traffic to one half of an ADL5205 variable gain amplifier.
TODO: Screenshot

23.10.1 Inputs

Signal name Type Description
spi SPI bus The SPI data bus

23.10.2 Parameters

This filter takes no parameters.

23.10.3 Owutput Signal

13

This filter outputs one ADL5205 sample object for each write transaction, formatted as “write:

FA=2 dB, gain=8 dB".

116 CHAPTER 23. FILTERS

23.11 Autocorrelation

This filter calculates the autocorrelation of an analog waveform. Autocorrelation is a measure of
self-similarity calculated by multiplying the signal with a time-shifted copy of itself. In Fig. 23.18,
strong peaks can be seen at multiples of the 8b/10b symbol rate.

For best performance, it is crucial to keep the maximum offset as low as possible, since filter
run time grows linearly with offset range.

20 ns 25 ns

10 ns 15 n

-5 ns 0 fs 5 ns 15 30 ns 35 ns

Figure 23.18: Example waveforms showing autocorrelation of an 8b/10b signal

é data »
—) Cl-C2

Hardware input
= IN+ data» |

Subtract Autocorrelation
= Uil L L

Hardware input

Figure 23.19: Example filter graph showing usage of autocorrelation filter

23.11.1 Inputs

Signal name Type Description

din Uniform analog Input waveform

23.11. AUTOCORRELATION 117

23.11.2 Parameters

Parameter name Type Description

Max offset Integer Maximum shift (in samples)

23.11.3 Owutput Signal

This filter outputs an analog waveform with the same timebase as the input, one sample for each
correlation offset.

Stream name Type Description

data Uniform analog Autocorrelation waveform

118 CHAPTER 23. FILTERS
23.12 Average

This filter calculates the average of its input.

¥ Waveform Group 1 X ¥ Measurements

9.05 s

=100 my

Figure 23.20: Typical usage of average filter

Hardware input

Figure 23.21: Example filter graph showing usage of average filter

23.12.1 Inputs

Signal name Type Description

in Analog or scalar Input waveform

23.12.2 Parameters

This filter takes no parameters.

23.12. AVERAGE 119

23.12.3 Owutput Signal

Signal name Type Description

latest Scalar Average of the filter’s current input
cumulative Scalar Average of all input since the last clear-sweeps
totalSamples Scalar Total number of integrated samples

totalWaveforms Scalar Total number of integrated waveforms

120 CHAPTER 23. FILTERS

23.13 Bandwidth

Calculates the -3 dB bandwidth of a network, given the insertion loss magnitude.

The bandwidth is measured relative to a user-specified reference level; for example the bandwidth
of a -20 dB attenuator can be measured by setting the reference level to -20 dB.

Figure 23.22: Measuring the -3 dB bandwidth of a cable

s
Touchstone Import ¢ 1 . din |

Bandwidth

Figure 23.23: Example filter graph showing usage of bandwidth filter on an imported Touchstone
file

23.13.1 Inputs

Signal name Type Description

din Analog Input waveform (typically S21)

23.13.2 Parameters

Parameter name Type Description

Reference Level Float Nominal (DC / mid band) insertion loss of the network

23.13. BANDWIDTH 121

23.13.3 Owutput Signal

This filter outputs a scalar containing the first frequency in the network which is at least -3 dB
below the reference level. If the input waveform is entirely below this level, the lowest frequency in
the input is returned. If the input waveform is entirely above this level, the highest frequency in
the input is returned.

Signal name Type Description

data Scalar Calculated bandwidth

122 CHAPTER 23. FILTERS

23.14 Base

TODO: needs to be updated when we port to scalar interface
Calculates the base (logical zero level) of each cycle in a digital waveform.

It is most commonly used as an input to statistics, to view the average base of the entire
waveform. At times, however, it may be useful to view the base waveform. For example, in Fig.
23.24, the vertical eye closure caused by channel ISI is readily apparent.

:E;.az.e{r::l - r::';_'}:

Figure 23.24: Example of base measurement on a serial data stream

23.14.1 Inputs

Signal name Type Description

din Analog Input waveform

23.14.2 Parameters

This filter takes no parameters.

23.14.3 Owutput Signal

This filter outputs an analog waveform with one sample for each group of logical zeroes in the input
signal, containing the average value of the zero level for the middle 50% of the low period.

23.15. BIN IMPORT 123

23.15 BIN Import

Loads an Agilent / Keysight / Rigol binary waveform file.

23.15.1 Inputs

This filter takes no inputs.

23.15.2 Parameters

Parameter name Type Description

BIN File Filename Path to the file being imported

23.15.3 Output Signal

This filter outputs a uniformly sampled analog waveform for each channel in the file. The number
of output streams is variable based on how many channels are present in the file.

124 CHAPTER 23. FILTERS

23.16 Burst Width

Measures the burst width of each burst in a waveform. A Burst is a sequence of adjacent crossings
of the mid level reference of the waveform. Burst width is the duration of this sequence. Bursts
are separated by a user-defined idle time that can be provided as a parameter to this filter. The
measurement is made on each burst in the waveform.

Burstwidth_8(Burst Waveform)

Figure 23.25: Example of burst width measurement

23.16.1 Inputs

Signal name Type Description

din Analog Input waveform

23.16.2 Parameters

Parameter name Type Description

Idle Time Integer Minimum idle time with no toggles, before declaring start of a
new burst

23.16.3 Output Signal

This filter outputs an analog waveform with one sample for each burst in the input signal.

23.17. BUS HEATMAP

23.17 Bus Heatmap

125

Computes a “spectrogram" visualization of bus activity with address on the Y axis and time on the
X axis, in order to identify patterns in memory or bus activity.

The current version only supports CAN bus however other common memory interfaces will be

added in the future.

Figure 23.26: CAN bus activity on a car’s OBD port showing the vehicle being started, running for

50 seconds, then shutting down

mazda3 engine start lots of button presses.pcapng

Figure 23.27: Example filter graph showing usage of bus heatmap filter on an imported CAN bus

capture

23.17.1 Parameters

Parameter name Type

Description

Max Address Integer

Maximum address to display in the plot

X Bin Size Integer

Width of each pixel in the X axis (timebase units)

Y Bin Size Integer

Number of addresses to merge into each pixel in the Y axis

23.17.2 Owutput Signal

This filter outputs a 2D density plot that is (max address) / (y bin size) pixels high and (memory
depth) / (x bin size) pixels wide, spanning the entire duration of the input and the full address

range requested.

126 CHAPTER 23. FILTERS

All packets within the input waveform have the start time and address rounded to the closest
bin in X and Y. The corresponding pixel in the integration buffer is incremented, then the final
waveform is normalized to cover the full range of the selected color ramp.

Signal name Type Description

data Density map Calculated heatmap

23.18. CAN 127
23.18 CAN

Decodes the Control Area Network (CAN) bus, commonly used in vehicle control systems. Both
standard (11 bit) and extended (29 bit) IDs are supported.

CAN-FD frames are detected and flagged as such, but the current decode cannot parse them
fully. Full support is planned (scopehal:334).

CRC

\ CANH - CANL CAN(Threshold{CANH - CANL))
SN data »————— » din I—l I—l data » ————» CANH data »

.‘/ »IN. a =1 E

Subtract Threshold

¥ Protocol: CANIThreshold(CANH - CANL))

¥ Data Format

D -k Len Data

07f9cd4sl

165B8c%76

ldcb2Bc7?

OcOca59e

UcBcebOf

02925721
10:43:31.81310396B86 114dc4ll .
10:43:31 8686097434 18eallda Data
10:43:32.81410359686 lae3a3l3 (RTR ACK
10:43:32.8922071473 055fef5a RTR ACK

Figure 23.30: Example packet output

23.18.1 Inputs

Signal name Type Description
CANH Digital Thresholded CANH (or CANH-CANL) signal

https://github.com/ngscopeclient/scopehal/issues/334

128 CHAPTER 23. FILTERS

23.18.2 Parameters

Parameter name Type Description

Bit Rate Integer Bit rate of the bus (most commonly 250 or 500 Kbps)

23.18.3 Output Signal

The CAN bus decode outputs a time series of CAN sample objects. These consist of a type field
and a byte of data.

Signal name Type Description

data Protocol Decoded waveform data

Type Description Color Format
Control Start of frame SOF

ID CAN ID Address ID %x

RTR Remote Transmission Request DATA | REQ

FD mode CAN-FD mode FD | STD

RO Reserved bits RSVD

DLC Data Length Code Len 3

Data Payload data %02x
Valid CRC Good checksum _ CRC: %04x
Invalid CRC Bad checksum (@ iaicnmeEel CRC: %04x

CRC delimiter Bus turnaround

CRC DELIN

ACK Acknowledgement _ ACK
NAK Missing acknowledgement NAK
ACK delimiter Bus turnaround ACK DELIM
EOF End of frame Preamble EOF

23.18.4 Protocol Analyzer

TODO

23.19. CAN ANALYZER 129

23.19 CAN Analyzer

This filter adds a protocol analyzer table to CAN waveforms which do not have one natively.

130 CHAPTER 23. FILTERS

23.20 CAN Bitmask

Extracts a bit-masked value from a stream of CAN bus packets and outputs a Boolean waveform

23.21. CAN-UTILS IMPORT 131
23.21 Can-Utils Import

Loads a log file generated by the candump utility from the Linux can-utils software package and
displays it as a series of CAN packets.

Example capture command: candump -1 can@

132 CHAPTER 23. FILTERS

23.22 Channel Emulation

This filter models the effects of applying an arbitrary channel, described via a single path of a set
of S-parameters, to a waveform. Fig. 23.31 shows the result of passing a 1.25 Gbps serial data
pattern through S21 of a 10x oscilloscope probe with approximately 500 MHz bandwidth. The ISI,
attenuation, and phase shift introduced by the channel can all be seen.

0fs 5ns 10 ns 15 ns 20 ns 25 ns

|ChannelEmulation(C1 - C2, flexground.s2p)| l l

Figure 23.31: Example of channel emulation on a serial data stream

The channel model works in the frequency domain. An FFT is performed on the input, then
each complex point is scaled by the interpolated magnitude and rotated by the phase, then an
inverse FFT is used to transform the signal back into the time domain.

The group delay of the channel is then estimated and samples are discarded from the beginning
of the waveform to prevent causality violations. For example, when performing channel emulation
using a network with a 1ns group delay, the output waveform will begin 1ns after the input (since
the channel output before this depends on input samples before the start of the waveform). Note
that the automatic group delay estimation uses points from roughly the center of the S-parameter
dataset in the current implementation; channels which do not have a significant passband around
this frequency will give incorrect group delay estimates. The “Group Delay Truncation Mode"
parameter can be set to manual in this case, selecting the “Group Delay Truncation" parameter
instead of the automatically estimated value.

By choosing appropriate stimulus waveforms and S-parameter paths, many different kinds of
analysis can be performed. For example, given a 4-port network describing two transmission lines
(with ports 1 and 3 as input, and 2 and 4 as output):

e Applying S11 to a step or impulse waveform gives TDR response of the port 1-2 channel.

Applying So1 to an impulse waveform gives impulse response of the port 1-2 channel

Applying S21 to a serial data stream gives the port 1-2 signal as it would be seen by a receiver

Applying S31 to a serial data stream gives the NEXT between the port 1-2 and 3-4 channels

Applying S41 to a serial data stream gives the FEXT between the port 1-2 and 3-4 channels

Note that only the single S-parameter path provided is considered, and reflections elsewhere in
the system are not modeled. As a result, multiple applications of this filter to emulate a large circuit
piecewise (for example, a cable followed by a fixture) may give inaccurate results since reflections
between the two networks are not considered. In this situation, it is preferable to use a circuit
simulator or the S-Parameter Cascade filter to calculate combined S-parameters of the entire circuit
and then perform the channel emulation once.

23.22. CHANNEL EMULATION 133

23.22.1 Inputs

Signal name Type Description

signal Analog Input waveform
mag Analog S-parameter magnitude channel
ang Analog S-parameter angle channel

23.22.2 Parameters

Parameter name Type Description
Max Gain Float Maximum gain to apply
Group Delay Truncation Int Group delay override for manual mode

Group Delay Truncation Mode Enum Specifies manual or automatically estimated group
delay

23.22.3 Owutput Signal

This filter outputs an analog waveform with the same timebase as the input, with the emulated
channel applied.

134 CHAPTER 23. FILTERS

23.23 Clip

This filter limits the maximum or minimum value of a waveform to a given value. It can be configured
to clip “above" in which case it imposes an upper limit or “below" in which case it imposes a lower
limit.

23.23.1 Inputs

Signal name Type Description

din Analog Input waveform

23.23.2 Parameters

Parameter name Type Description

Behavior Enum Select between clipping values above or below selected value

Level Float ~Maximum/minimum signal level

23.23.3 Owutput Signal

This filter outputs an analog waveform with the same timebase as the input, clipped as specified
by the parameters.

23.24. CLOCK RECOVERY (D-PHY HS MODE) 135
23.24 Clock Recovery (D-PHY HS Mode)

Extracts a double-rate clock from a MIPI D-PHY clock-+data stream, which is gated to only toggle
when the data input is in HS mode. This can be used for generating eye patterns of the HS-mode
data.

136 CHAPTER 23. FILTERS

23.25 Clock Recovery (PLL)

This filter uses a PLL to recover a clock from a serial data stream. The recovered clock is double-
rate and phased 90°with respect to the data, such that the data can be sampled directly by both
edges of the PLL output clock.

When the optional clock gating input is low, the output does not toggle and any edges in the
input signal are ignored. As soon as the gate goes high, the PLL will phase shift the internal NCO
to align with the next transition in the input signal and then begin running closed-loop.

NOTE: The current edge detector uses a single threshold suitable for NRZ inputs. When using a
multi-level modulation such as PAM-4 or MLT-3, set the threshold to the highest or lowest crossing
level. This will work fine for MLT-3 but introduces some data-dependent jitter in PAM signals (since
the slew rate for an 00-11 transition is different than that for a 10-11 transition). The resulting
recovered clock should still be adequate for protocol decoding, however a better edge detector will
need to be implemented in order to do adequate jitter measurements on PAM waveforms. An edge
detector suitable for PAM is planned (scopehal:77).

The current implementation of this filter uses a simple bang-bang control loop which is fast
and provides reasonable jitter transfer performance (passing high frequency jitter but rejecting
spread spectrum modulation), but does not precisely match the jitter transfer characteristics of any
particular serial data standard. In the future, several standard PLL responses including the Fibre
Channel golden PLL (scopehal:163) will be supported as options.

Figure 23.32: Example of CDR PLL on a serial data stream

23.25.1 Inputs

Signal name Type Description

IN Analog Input waveform

Gate Digital Clock enable signal, or NULL to disable gating

23.25.2 Parameters

Parameter name Type Description

Symbol rate Float Symbol rate, in Hz

Threshold Float Decision threshold for the edge detector, in volts

23.25.3 Owutput Signal

This filter outputs an digital waveform with one sample per transition of the recovered clock.

https://github.com/ngscopeclient/scopehal/issues/77
https://github.com/ngscopeclient/scopehal/issues/163

23.26. CLOCK RECOVERY (UART) 137

23.26 Clock Recovery (UART)

This filter uses a DLL to recover a sampling clock from UART or similar protocol at a known baud
rate. The single-rate recovered clock idles low and toggles for each bit in each frame and is phased
90°with respect to data, such that each bit can be sampled on the rising edge of the DLL output
clock. This filter can be used for generating an eye pattern of the serial signal.

The current implementation limits support to serial protocols with 10 bits/symbols per frame.
Consider using the PLL-based clock recovery for unsupported serial formats if applicable.

The current implementation does not synchronize by aligning falling clock edges with symbol
edges.

Figure 23.33: Example of UART CDR on two serial data frames separated by a short delay

23.26.1 Inputs

Signal name Type Description

din Analog Input waveform

23.26.2 Parameters

Parameter name Type Description

Baud rate Float Symbol rate, in bps

Threshold Float Decision threshold for the edge detector, in volts

23.26.3 Owutput Signal

This filter outputs a digital waveform with the sampling clock recovered from the analog stream.

138 CHAPTER 23. FILTERS

23.27 Complex Import

Loads waveform data from a raw binary file containing I/Q samples in one of several formats.
Regardless of sample format, the samples must be in I-Q-I-Q order.

Supported formats (native endianness, no byte swapping is performed):

Signed int8

Unsigned int8

Signed int16

Float32

Float64

23.27.1 Inputs

This filter takes no inputs.

23.27.2 Parameters

Parameter name Type Description

Complex File String Path to the input file
File Format Enum Data type of the samples
Sample Rate Int Sampling frequency

23.27.3 Output Signal

This filter outputs two streams named “I" and “Q" containing the I/Q waveform data.

23.28. COMPLEX SPECTROGRAM 139
23.28 Complex Spectrogram

Plots a spectrogram of complex 1/Q data.

140 CHAPTER 23. FILTERS

23.29 Constant

This filter outputs a scalar with a constant value, which may be used as input to other filter graph
blocks.

23.29.1 Inputs

This filter takes no inputs.

23.29.2 Parameters

Parameter name Type Description

Value Float The value to output

Unit Enum Data type of the constant value

23.29.3 Output Signal

This filter outputs a single scalar with a constant value.

23.30. CONSTELLATION 141

23.30 Constellation

This filter takes I/Q streams and a double-rate symbol clock and outputs a constellation diagram.

142 CHAPTER 23. FILTERS

23.31 Coupler De-Embed

Given waveforms from both coupled ports of a dual directional coupler and the S-parameters of the
coupler, de-embeds the coupler response in order to recover the forward and reverse waveforms.

NOTE: The current implementation of this filter requires the VK_KHR_push_descriptor Vulkan
extension. A fallback implementation for GPUs without this extension will be added at some point
in the future.

Both coupled-port waveforms must be the same sample rate, memory depth, and de-skewed
relative to one another.

This filter uses a multi-step algorithm to de-embed both the insertion loss of the coupled path
and enhance the apparent directivity of the coupler:

1. De-embed the coupled path response from the coupled port waveforms in order to calculate an
initial estimate of the input port waveforms. The same FFT-based algorithm as the De-Embed
filter is used.

2. Given the initial estimated input port waveforms, calculate the leakage from the forward
path to the reverse coupled port, and from the reverse path to the forward coupled port. The
same FFT-based algorithm as the Channel Emulation filter is used. This estimate is imperfect
since it assumes perfect directivity, so a small amount of the legitimate waveform is incorrectly
included in the leakage waveform.

3. Subtract the leakage waveforms from the measured coupled port waveforms. This removes
most of the leakage (as well as a small amount of the legitimate waveform).

4. De-embed the coupled path response from the subtracted waveform in order to get a revised
estimate of input port waveforms. This is the final output of the filter.

23.31.1 Inputs

Signal name Type Description
forward Analog Forward coupled port waveform
reverse Analog Reverse coupled port waveform

forwardCoupMag Analog Magnitude response of forward coupled path

forwardCoupAng Analog Angle response of forward coupled path

reverseCoupMag Analog Magnitude response of reverse coupled path

reverseCoupAng Analog Angle response of reverse coupled path

forwardLeakMag Analog Magnitude response of forward leakage path

forwardLeakAng Analog Angle response of forward leakage path

reverseLeakMag Analog Magnitude response of reverse leakage path

reverseLeakAng Analog Angle response of reverse leakage path

23.32. CSV EXPORT 143

23.32 CSV Export

Saves waveform data to a comma-separated-value file.

The Update Mode parameter specifies how and when the file is modified:

e Append (continuous): Every time the filter graph runs, the inputs are appended to the
end of the file.

e Append (manual): When the “Export" button in the filter properties box is clicked, the
inputs are appended to the end of the file.

e Overwrite (continuous): Every time the filter graph runs, the input waveforms replace the
current contents of the file.

e Overwrite (manual): When the “Export" button in the filter properties box is clicked, the
input waveforms replace the current contents of the file.

23.32.1 Inputs

This filter takes a variable number of inputs, named “columnl", “column2", etc, which may be of
analog, digital, or arbitrary protocol type. 2D persistence maps are not supported.

23.32.2 Parameters

Parameter name Type Description

File name String Path to the CSV file

Update mode Enum Specifies how and when to update the file)

23.32.3 Output Signal

This filter stores its output to a file and has no filter graph output ports.

144 CHAPTER 23. FILTERS

23.33 CSV Import

Loads waveform data from a comma-separated-value file.

23.34. CURRENT SHUNT 145

23.34 Current Shunt

Converts a voltage waveform acquired across a known resistance into a current waveform.

146 CHAPTER 23. FILTERS

23.35 DDJ

Calculates the peak-to-peak data-dependent jitter for a serial data stream.

This filter uses the non-repeating-pattern method, which allows DDJ to be computed for ar-
bitrary waveforms rather than requiring a short, repeating PRBS. In this method, per-UI jitter
(TIE) measurements are split across 2" histogram bins, one for each possible combination of the
preceding n bits. The jitter samples for each bin are then averaged to remove the effects of other
jitter, leaving only the DDJ. The final DDJ value is reported as the difference between the minimum
and maximum histogram bins.

The current implementation uses a fixed window size of n = 8 UL If the channel has significant
memory effects or reflections with delays of more than 8 UI, DDJ maybe underestimated.

The current implementation only supports NRZ signals and cannot measure DDJ for MLT3 or
PAM waveforms.

23.35.1 Inputs

Signal name Type Description

TIE Analog TIE waveform computed by the TIE filter
Threshold Digital Thresholded digital sample values
Clock Digital Double rate, center aligned sampling clock for threshold values

23.35.2 Parameters

This filter takes no parameters.

23.35.3 Owutput Signal

This filter outputs an analog waveform with a single sample containing the computed DDJ value.

Additionally, the raw DDJ histogram is stored internally and may be accessed by other filters
via the C++ API. There is currently no way to display the histogram content.

23.36. DDR1 COMMAND BUS 147

23.36 DDR1 Command Bus

Decodes the command bus for first-generation DDR SDRAM.

148 CHAPTER 23. FILTERS

23.37 DDR3 Command Bus

Decodes the command bus for third-generation DDR SDRAM.

23.38. DE-EMBED 149

23.38 De-Embed

Applies the inverse of a channel (described by a single path in an S-parameter dataset, normally
S21) to a signal, in order to calculate what the waveform would have looked like at the input to a
cable, fixture, etc. given the signal seen at the output.

The channel model works in the frequency domain. An FFT is performed on the input, then
each complex point is scaled by the interpolated magnitude and rotated by the phase, then an
inverse FFT is used to transform the signal back into the time domain.

The group delay of the channel is then estimated and samples are discarded from the end of
the waveform to prevent causality violations. For example, when performing a de-embed using a
network with a 1ns group delay, the output waveform will end 1ns before the input does (since the
channel output after this depends on input samples after the end of the stimulus waveform). Note
that the automatic group delay estimation uses points from roughly the center of the S-parameter
dataset in the current implementation; channels which do not have a significant passband around
this frequency will give incorrect group delay estimates. The “Group Delay Truncation Mode"
parameter can be set to manual in this case, selecting the “Group Delay Truncation" parameter
instead of the automatically estimated value.

Note that only the single S-parameter path provided is considered, and reflections elsewhere
in the system are not modeled. As a result, multiple applications of this filter to de-embed a
large circuit piecewise (for example, a cable followed by a probe) may give inaccurate results since
reflections between the two networks are not considered. In this situation, it is preferable to use a
circuit simulator or the S-Parameter Cascade filter to calculate combined S-parameters of the entire
circuit and then perform a single de-embed.

The maximum gain the de-embed applies is capped (default 20 dB) in order to prevent amplifying
noise outside the passband of the network being de-embedded.

23.38.1 Inputs

Signal name Type Description

signal Analog Input waveform
mag Analog S-parameter magnitude channel
ang Analog S-parameter angle channel

23.38.2 Parameters

Parameter name Type Description
Max Gain Float Maximum gain to apply
Group Delay Truncation Int Group delay override for manual mode

Group Delay Truncation Mode Enum Specifies manual or automatically estimated group
delay

23.38.3 Output Signal

This filter outputs an analog waveform with the same timebase as the input, with the emulated
channel applied.

150 CHAPTER 23. FILTERS

23.39 Deskew

Moves an analog waveform earlier or later in time to compensate for trigger offsets, probe length
mismatch, etc. It is generally preferable to deskew using the skew adjustment on the channel during
acquisition; this filter is provided for correction in postprocessing.

23.39.1 Inputs

Signal name Type Description

din Analog Input waveform

23.39.2 Parameters

Parameter name Type Description

Skew Float Time offset to shift the waveform

23.39.3 Output Signal

This filter outputs an analog waveform with one sample for each sample in the input, phase shifted
by the requested offset.

23.40. DIGITAL TO NRZ 151

23.40 Digital to NRZ

Convert a digital signal (and associated clock) to an analog NRZ waveform. This filter uses a
simplistic piecewise linear rise/fall time model: the output stays at the logic low/high voltage until
the input changes, then ramps at a constant rate to then new value. For more accurate modeling
of edge shape use the IBIS Driver filter with the appropriate IBIS model for your DUT.

23.40.1 Inputs

Signal name Type Description
data Digital Digital data to send
clk Digital Clock for data

23.40.2 Parameters

Parameter name Type Description

Level 0 Float Voltage to send when the input is a logic 0
Level 1 Float Voltage to send when the input is a logic 1
Sample Rate Int Sample rate for the generated waveform
Transition Time Int Rising and falling edge time

23.40.3 Owutput Signal

This filter outputs an analog NRZ version of the provided digital input, sampled uniformly at the
specified rate.

152 CHAPTER 23. FILTERS

23.41 Digital to PAM4

Convert a digital signal (and associated clock) to an analog PAM-4 waveform. This filter uses a
simplistic piecewise linear rise/fall time model: the output stays at the current symbol’s voltage
until the input changes, then ramps at a constant rate to then new value. For more accurate
modeling of edge shape use the IBIS Driver filter with the appropriate IBIS model for your DUT.

The input data is a digital serial bit stream at twice the PAM4 symbol rate. Two consecutive
input bits map to a single PAM-4 output sample.

23.41.1 Inputs

Signal name Type Description

data Digital Serial digital data to send
clk Digital Clock for data

23.41.2 Parameters

Parameter name Type Description

Level 00 Float Voltage to send when the input is a logic 0-0
Level 01 Float Voltage to send when the input is a logic 0-1
Level 10 Float Voltage to send when the input is a logic 1-0
Level 11 Float Voltage to send when the input is a logic 1-1
Sample Rate Int Sample rate for the generated waveform
Transition Time Int Rising and falling edge time

23.41.3 Output Signal

This filter outputs an analog PAM-4 version of the provided digital input, sampled uniformly at the
specified rate.

23.42. DISPLAYPORT - AUX CHANNEL 153

23.42 DisplayPort - Aux Channel

Decodes the Auxiliary Channel of DisplayPort

154 CHAPTER 23. FILTERS

23.43 Divide

Divides one waveform by another.

23.44. DOWNCONVERT 155
23.44 Downconvert

Performs digital downconversion by mixing a directly sampled RF signal with a two-phase local
oscillator, then outputs the downconverted signal. No LO rejection filtering or decimation is per-
formed.

156 CHAPTER 23. FILTERS
23.45 Downsample

Low-pass filters a signal to prevent aliasing, then decimates by an integer factor.

23.46. DRAM CLOCKS 157
23.46 DRAM Clocks

Given a DRAM command bus and a DQS strobe, produce separate gated DQ clock streams for
read and write bursts.

158 CHAPTER 23. FILTERS

23.47 DRAM Trcd

Calculates T,.q (RAS-to-CAS delay) for each newly opened row in a DRAM command bus stream.

23.48. DRAM TRFC 159

23.48 DRAM Trfc

Calculates T, ¢, (refresh-to-refresh delay) for each refresh operation in a DRAM command bus stream.

160 CHAPTER 23. FILTERS

23.49 Duty Cycle

Calculates the duty cycle of a bimodal waveform. The duty cycle is defined as the percentage of
time spent in the high state divided by the period.

23.50. DVI 161

23.50 DVI

Decodes Digital Visual Interface (DVI) video signals.

162 CHAPTER 23. FILTERS
23.51 Emphasis

Adds pre/de emphasis to a signal.

23.52. EMPHASIS REMOVAL 163

23.52 Emphasis Removal

Removes pre/de emphasis from a signal.

164 CHAPTER 23. FILTERS

23.53 Enhanced Resolution

Applies a FIR low-pass filter to a signal to increase the vertical resolution and reduce noise at the
cost of reduced bandwidth. This technique assumes a small amount of Gaussian noise is present in
the input waveform, such that a signal whose true value is midway between two ADC codes will
randomly fluctuate between the two quantized values, with an average equal to the true value.

Each half bit of resolution reduces the bandwidth by an additional factor of two beyond the
Nyquist limit. For example, a 1.5 bit resolution improvement reduces the bandwith to Fnyquist /
8. The filter properties dialog displays the calculated -3 dB bandwidth based on the current input
sample rate.

23.53.1 Inputs

Signal name Type Description

in Analog Input signal

23.53.2 Parameters

Parameter name Type Description

Bits Enum Number of additional bits of resolution to add

23.54. ENVELOPE 165

23.54 Envelope

Finds the minimum and maximum of each sample in the input over time, and outputs them as

separate streams.

166 CHAPTER 23. FILTERS
23.55 Ethernet - 10baseT

Decodes the 10base-T Ethernet PCS/PMA as specified in IEEE 802.3-2018 clause 14.

23.56. ETHERNET - 100BASET1 167
23.56 Ethernet - 100baseT1

Decodes the 100base-T1 single-pair / automotive Ethernet PMA /PCS, as specified in IEEE 802.3-
2018 clause 96.

168 CHAPTER 23. FILTERS

23.57 Ethernet - 100baseT1 Link Training

Decodes the link training stage of 100base-T1 single-pair / automotive Ethernet, as specified in
[EEE 802.3-2018 clause 96.

23.58. ETHERNET - 100BASETX 169
23.58 Ethernet - 100baseTX

Decodes the 100base-TX Ethernet PMA /PCS as specified in IEEE 802.3-2018 clause 24 and 25,
and the ANSI X3T12 FDDI PHY.

170 CHAPTER 23. FILTERS
23.59 Ethernet - 1000baseX
Decodes the 1000base-X Ethernet PCS as specified in IEEE 802.3-2018 clause 36.
Signal name Type Description
data 8b/10b Output of 8b/10b protocol decode
23.59.1 Parameters
This filter takes no parameters.
23.59.2 Output Signal
The 1000base-X filter outputs a series of Ethernet frame segment objects.
Type Description Color Format
Preamble Preamble PREAMBLE
Preamble Start of frame delimiter SEFD
Address Src/dest MAC Address From 02:00:11:22:33:44

Control Ethertype Control Type: IPv4
Type: Oxbeef

Control VLAN tag VLAN 10, PCP 0
Data Frame data ab

Checksum OK Valid FCS _ CRC: Oxdeadbeef

Checksum Bad Invalid FCS @i ciinmeEel CRC: OxbaadcOde

Error Malformed data Error ERROR

TODO: Document protocol analyzer output

23.60. ETHERNET - 10GBASE-R 171

23.60 Ethernet - 10Gbase-R

Decodes the 10Gbase-R Ethernet PCS as specified in IEEE 802.3-2018 clause 49.

172 CHAPTER 23. FILTERS

23.61 Ethernet - GMII

Decodes the Gigabit Media Independent Interface as specified in IEEE 802.3-2018 clause 35.

23.62. ETHERNET - QSGMII 173

23.62 Ethernet - QSGMII

Converts a Quad SGMII data stream into four separate SGMII data streams which can be inde-
pendently decoded.

174 CHAPTER 23. FILTERS

23.63 Ethernet - RGMII

Decodes the Reduced Gigabit Media Independent Interface as specified in the RGMII 2.0 specifica-
tion.

23.64. ETHERNET - RMII 175

23.64 FEthernet - RMII

Decodes the Reduced Media Independent Interface as specified in the RMII specification.

176 CHAPTER 23. FILTERS

23.65 Ethernet - SGMII

Decodes Serial GMII data at 10, 100, or 1000 Mbps rates to Ethernet frames.

23.66. ETHERNET AUTONEGOTIATION 177
23.66 Ethernet Autonegotiation

Decodes the Base-T autonegotiation signaling for Ethernet as specified in IEEE 802.3-2018 clause
28.

This filter outputs a stream of 16-bit negotiation codewords, which is typically fed to the Ethernet
Autonegotiation Page filter.

178 CHAPTER 23. FILTERS

23.67 Ethernet Autonegotiation Page

Decodes a stream of 16-bit negotiation codewords to ability values, as specified in IEEE 802.3-2018
annex 28A, 28B, and 28C.

Note that the autonegotiation protocol is stateful, so it is not possible to definitively decode a
single code word or small group of them in isolation. For accurate decoding, the input waveform
should start with the Base Page (sent during the link-down state before a link partner has been
detected).|

23.68. ETHERNET BASE-X AUTONEGOTIATION 179
23.68 Ethernet Base-X Autonegotiation

Decodes the Base-X autonegotiation signaling for Ethernet as specified in IEEE 802.3-2018 clause
37.

Also supports the extended autonegotiation used by SGMII.

180 CHAPTER 23. FILTERS
23.69 Exponential Moving Average

Calculates an exponential moving average of the input waveform, averaging the data at each sample
index with the previous values of the same over multiple consecutive acquisitions.

The average is calculated recursively; for sample value S and half life T, the recurrence relation
is:
T

Outli] = (1 - Ll) (Out[i-1]) + (L) (S)
2 2

23.69.1 Inputs

Signal name Type Description

din Analog Input signal

23.69.2 Parameters

Parameter name Type Description

Half-life Integer Half life of the average, in waveforms

23.70. EYE BIT RATE 181
23.70 Eye Bit Rate

Measures the bit rate of an eye pattern.

182 CHAPTER 23. FILTERS

23.71 Eye Height

Measures the vertical opening of an eye pattern.

23.72. EYE P-P JITTER 183
23.72 Eye P-P Jitter

Measures the peak-to-peak jitter of an eye pattern.

184 CHAPTER 23. FILTERS

23.73 Eye Pattern

Calculates an eye pattern.

23.74. EYE PERIOD 185
23.74 Eye Period

Measures the UI width of an eye pattern.

186 CHAPTER 23. FILTERS

23.75 Eye Width

Measures the horizontal opening of an eye pattern.

23.76. FALL 187

23.76 Fall

Measures the fall time of each falling edge in a waveform.

188 CHAPTER 23. FILTERS

23.77 FFT

Calculates a Fast Fourier Transform and displays the magnitude response.

23.78. FIR 189

23.78 FIR

Applies a finite-impulse-response filter to a signal.

190 CHAPTER 23. FILTERS

23.79 Frequency

Measures the frequency of each cycle in a waveform.

23.80. FSK 191

23.80 FSK

Converts a frequency-vs-time waveform (typically generated by the Vector Frequency filter either
directly or through a denoising filter) to a digital waveform. As of now, only BFSK is supported.

The filter calculates a histogram of the input signal each waveform, expecting a bimodal distri-
bution. The two highest histogram peaks are selected as the nominal logic 0 and 1 levels, with the
higher frequency assigned to logic 1 and the lower to logic 0.

Thresholding is performed at the midpoint of the nominal 0 and 1 levels, with hysteresis equal
to 20% of the difference between the nominal levels. Using adaptive thresholds allows the filter
to automatically track frequency-hopping systems as long as only one packet is present in each
waveform.

TODO: re-histogram any time we break squelch?

192 CHAPTER 23. FILTERS

23.81 Full Width at Half Maximum

Calculates the full width at the half of maximum value of all peaks in a signal.

Figure 23.34: Example of full width at half maximum of a Sinewave input waveform.

23.81.1 Inputs

Signal name Type Description

din Analog Input waveform

23.81.2 Parameters

Parameter name Type Description

Peak Threshold Float Pulses with peak values below this threshold are not considered

23.81.3 Owutput Signal

This filter outputs two analog waveforms. One shows the value of full width at half maximum value
of all the peaks in the signal. Another output waveform shows the amplitude of all the corresponding
peaks.

23.82. GATE 193

23.82 Gate

This filter outputs a copy of its input with zero delay if the enable signal is high. If the enable
signal is low, the output is either unchanged (latched) or no waveform is produced (gated).

194 CHAPTER 23. FILTERS
23.83 Glitch Removal

This filter removes ‘glitches’ from a digital waveform. A Minimum Width is specified, and any
‘pulse’ (period during which the waveform has the same value) shorter than that pulse is ignored,
the previous pulse continuing. Common use is to remove glitches from a f Hz signal by filtering

pulses shorter than ﬁ S.

23.83.1 Inputs

Signal name Type Description

data Digital Input data.

23.83.2 Parameters

Parameter name Type Description

Minimum Width Float Minimum width of a pulse allowed through.

23.83.3 Owutput Signal

This filter outputs a digital waveform which has no samples shorter than Minimum Width. The
output waveform does not have any samples until the first pulse of at least Minimum Width, and
the last state continues to the end of the waveform.

23.84. GROUP DELAY 195

23.84 Group Delay

Calculates the group delay of a phase-vs-frequency waveform, %.

23.84.1 Inputs

Signal name Type Description

Phase Analog Phase angle vs frequency

23.84.2 Parameters

This filter takes no parameters.

23.84.3 Owutput Signal

This filter outputs an analog waveform with one sample per frequency point, containing the group
delay at that frequency.

196 CHAPTER 23. FILTERS

23.85 Histogram

Computes a histogram from incoming data. Histogram counts are accumulated across multiple pro-
cessed waveforms and cleared on "Clear Sweeps." Number of histogram bins is determined from the
bin size parameter and the max/min values configured. Default behavior is to autorange the input
and have 100fs bins. Samples outside a configured manual range will fall into the highest/lowest
bin and the "CLIPPING" flag will be set on the output waveform.

23.85.1 Inputs

Signal name Type Description

data Analog Input data. Usually in units of fs.

23.85.2 Parameters

Parameter name Type Description

Autorange Bool If the filter should automatically range the maximum and min-
imum bins

Min Value Float Lower end of the lowest bin when Autorange disabled

Max Value Float Higher end of the highest bin when Autorange disabled

Bin Size Float Size of a bin. Number of bins is determined from this and

max,/min values

23.85.3 Output Signal

This filter outputs an analog waveform with one sample per bin and a value in counts. The "CLIP-
PING" flag on a waveform indicates that input samples fell outside the configured range of bins
(when not using Autoranging.)

23.86. HORIZONTAL BATHTUB 197

23.86 Horizontal Bathtub

Calculates a bathtub curve across a horizontal slice through an eye pattern.

198 CHAPTER 23. FILTERS

23.87 HDMI

Decodes HDMI

23.88. I*C 199

23.88 I%C

Decodes the Phillips I?C bus protocol.

200 CHAPTER 23. FILTERS

23.89 I°C EEPROM

Decodes common I2C EEPROM memory devices

23.90. I°C REGISTER 201

23.90 I°C Register

Decodes low level I2C bus traffic into a series of register read-write transactions targeting a specific
device address.

This filter assumes that the device has a fixed sized address pointer. Register writes consist of a
write to the device’s address, the register address, then write data. Reads consist of a write to the
device’s address, the register address, a read from the device’s address, and read data.

202 CHAPTER 23. FILTERS

23.91 IBIS Driver

Converts a digital waveform and double-rate clock to an analog waveform using the rising and falling
edge waveforms from an IBIS model.

This filter assumes a perfect 50Q load or other matched load as specified in the IBIS model;
clamp behavior of the driver in response to channels with significant reflection is not currently
modeled.

IBIS-AMI is not currently supported, however this is planned (scopehal:192).

Model name and termination conditions are dynamically created enumerations; the set of legal
values for these fields depends on the specific .ibs file loaded.

Note that IBIS corners specify minimum, typical, or maximum output voltage, not timing or
other properties.

23.91.1 Inputs

Signal name Type Description

data Digital Digital waveform to transmit

clk Digital Transmit clock (double rate)

23.91.2 Parameters

Parameter name Type Description

Corner Enum Name of the corner to use

File Path String Filesystem path to the IBIS model

Model Name Enum Name of the I/O cell model within the IBIS model to use
Sample Rate Int Sample rate to use for the output waveform

Termination Enum Name of the termination condition to use

23.91.3 Owutput Signal

This filter outputs an analog waveform containing uniformly spaced samples at the specified rate.

https://github.com/ngscopeclient/scopehal/issues/192

23.92. INVERT 203

23.92 Invert

Inverts an analog waveform by negating each sample.

204 CHAPTER 23. FILTERS

23.93 Intel eSPI

Decodes the Enhanced Serial Peripheral Interface protocol, used between Intel CPUs and peripherals
such as baseboard management controllers (BMCs) and embedded controllers (ECs).

23.94. IPV4 205

23.94 1Pv4

Internet Protocol version 4

206 CHAPTER 23. FILTERS

23.95 1Q Demux

Given a single waveform containing consecutively sampled I and @ values, plus a recovered clock,
output separate sampled I and Q waveforms and a half-rate clock.

I is always sampled before Q.

Two alignment methods are supported: None (first clock edge in the input is arbitrarily declared
to be I) and 100Base-T'1 (the alignment with the least (0,0) symbols is preferred)

23.96. 1Q SQUELCH 207

23.96 1Q Squelch

Gates I/Q data to eliminate noise between packets. Signal regions with amplitude below the squelch
threshold are replaced with an equal number of zero-valued samples.

208 CHAPTER 23. FILTERS

23.97 Jitter

Adds random and/or periodic jitter to a digital waveform by displacing each sample.

Random jitter is unbounded and has a Gaussian distribution with a user-specified standard
deviation. Periodic jitter is sinusoidal and has a bounded range of -1 to +1 times the specified
amplitude. Only a single frequency of Pj is supported, however several instances of this filter may
be chained in order to inject Pj at multiple frequencies. The starting phase of the Pj sinusoid is
random.

23.97.1 Inputs

Signal name Type Description

din Digital Input waveform

23.97.2 Parameters

Parameter name Type Description

Rj Stdev Float Standard deviation of random jitter
Pj Frequency Float Frequency of periodic jitter
Pj Amplitude Float Amplitude of periodic jitter

23.97.3 Owutput Signal

This filter outputs a digital waveform with one sample per sample in the input waveform, with
sample time shifted by the sum of random and periodic jitter terms. The output waveform will
have 1fs timebase resolution and not be dense packed, regardless of the input timebase configuration.

23.98. JITTER SPECTRUM 209
23.98 Jitter Spectrum

Calculates an FFT of a TIE waveform.

210 CHAPTER 23. FILTERS

23.99 JTAG

Joint Test Action Group

23.100. MAGNITUDE 211
23.100 Magnitude

Calculates the magnitude of a complex valued signal

212 CHAPTER 23. FILTERS

23.101 Maximum

This filter calculates the maximum of its input.

23.101.1 Inputs

Signal name Type Description

in Analog Input waveform

23.101.2 Parameters

This filter takes no parameters.

23.101.3 Output Signal

Signal name Type Description

latest Scalar Maximum of the filter’s current input
cumulative Scalar Maximum of all input since the last clear-sweeps
totalSamples Scalar Total number of integrated samples

totalWaveforms Scalar Total number of integrated waveforms

23.102. MDIO 213
23.102 MDIO

Decodes the Management Data Input/Output interface on Ethernet PHYs. At the moment, only
Clause 22 format is supported.

214 CHAPTER 23. FILTERS

23.103 Memory

Takes a snapshot of the input which remains “frozen" until manually updated. Typically used for
comparing past and present values of a signal on the same plot.

23.104. MIL-STD-1553 215

23.104 MIL-STD-1553

Decodes the MIL-STD-1553 avionics data bus.

216 CHAPTER 23. FILTERS

23.105 Minimum

This filter calculates the minimum of its input.

23.105.1 Inputs

Signal name Type Description

in Analog Input waveform

23.105.2 Parameters

This filter takes no parameters.

23.105.3 Output Signal

Signal name Type Description

latest Scalar Minimum of the filter’s current input
cumulative Scalar Minimum of all input since the last clear-sweeps
totalSamples Scalar Total number of integrated samples

totalWaveforms Scalar Total number of integrated waveforms

23.106. MIPI D-PHY DATA 217

23.106 MIPI D-Phy Data

Converts two streams of D-Phy Symbols (one data and one clock) into bytes and control events.

Only a single data lane is supported at the moment, but multi-lane support will be added in
the future.

This filter only supports high speed data; escape mode data is handled by the D-PHY Escape
Mode filter.

218 CHAPTER 23. FILTERS
23.107 MIPI D-Phy Escape Mode

Converts a stream of D-PHY Symbols for a data lane into low-power data.

23.108. MIPI D-PHY SYMBOL 219
23.108 MIPI D-Phy Symbol

Decodes one or two analog channels to MIPI D-PHY symbols (HS/LS line states). Either the
positive half, or both positive and negative, of the pair may be provided.

If only the positive half is provided, it is possible to decode HS data and clocks, but not the LP-
01 and LP-10 states, as these are indistinguishable from LP-00 and LP-11. This prevents proper
decoding of Escape Mode data, although Start-Of-Transmission sequences may be inferred from
context.

220 CHAPTER 23. FILTERS

23.109 MIPI DSI Frame

Converts a MIPI DSI Packet stream into video scanlines.

23.110. MIPI DSI PACKET 221

23.110 MIPI DSI Packet

Converts two streams of D-Phy Symbol’s (one data and one clock) into MIPI DSI packets.

222 CHAPTER 23. FILTERS
23.111 Moving Average

Calculates a moving average (box filter) over an analog waveform.

23.112. MULTIPLY 223
23.112 Multiply

Multiplies one waveform by another. No resampling is performed; both inputs must have identical
sample rates.

Unit conversions are performed, for example the product of a voltage and current waveform is
a power waveform.

224 CHAPTER 23. FILTERS

23.113 Noise

Adds Gaussian noise with a specified standard deviation to a waveform.

23.114. OVERSHOOT 225

23.114 Overshoot

226 CHAPTER 23. FILTERS

23.115 PAM4 Demodulator

Converts an analog PAM4 waveform and recovered clock into a digital serial waveform and recovered
clock at twice the symbol rate. This allows conventional NRZ protocol decodes to be applied to a
PAM4 data stream.

Gray coding is assumed, as used by all major PAM-4 networking standards.

23.116. PAM EDGE DETECTOR 227
23.116 PAM Edge Detector

Finds level crossings in a PAM signal (of arbitrary order) and outputs a digital waveform which
toggles each time the PAM signal transitions to a new level. This may be used as the input to a
CDR PLL block which is designed to work on NRZ input.

228 CHAPTER 23. FILTERS

23.117 Parallel Bus

23.118. PCAPNG IMPORT 229

23.118 PcapNG Import

Imports a PcapNG file as a list of packets. As of this writing, CAN is the only implemented link
layer.

230 CHAPTER 23. FILTERS

23.119 PCle Data Link

Decodes the Data Link layer of PCI Express. At this layer DLLPs are fully decoded. TLP sequence
numbers are visible and CRC16s are checked, however TLP content is displayed as hex dumps.

23.120. PCIE GEN 1/2 LOGICAL 231
23.120 PCle Gen 1/2 Logical

Decodes the Logical Sub-Block of the PCI Express 1.0 and 2.0 PHY. This layer decodes 8B/10B
symbols and the LFSR scrambler. TLP and DLLP start/end markers are identified but no packet
decoding is performed.

232 CHAPTER 23. FILTERS
23.121 PCle Gen 3/4/5 Logical

Decodes the Logical Sub-Block of the PCI Express 3.0, 4.0, and 5.0 PHY. This layer converts
128b/130b symbols into a stream of protocol packets and content. TLP and DLLP start/end
markers are identified but no packet decoding is performed.

23.122. PCIE LINK TRAINING 233
23.122 PCle Link Training

Decodes the initial PCle genl/2 link training sequence

234 CHAPTER 23. FILTERS

23.123 PCle Transport

Decodes the Transport layer of PCI Express. At this layer TLPs are fully decoded, however only a
unidirectional view of the system is visible (only TX or only RX).

23.124. PEAK HOLD 235

23.124 Peak Hold

236 CHAPTER 23. FILTERS

23.125 Peak-to-Peak

23.126. PEAKS 237

23.126 Peaks

Finds peaks in a waveform (typically a spectrum of some sort)

238 CHAPTER 23. FILTERS

23.127 Period

23.128. PHASE 239

23.128 Phase

Displays the relative phase of a signal as a function of time. Typically used for visualizing PSK
modulations.

240 CHAPTER 23. FILTERS

23.129 Phase Nonlinearity

Given a phase angle waveform, outputs the difference between the actual phase and linear phase.
A perfectly linear network will be displayed as a horizontal line at Y=0; leading or lagging phase
will show up as spikes above or below zero.

The nominal linear phase response is calculated based on the averge group delay between two
user-supplied frequencies. Moving the reference frequencies further apart reduces the impact of
phase noise in the data (since more points are being averaged) however both points must be located
well within the linear region of the network in order to give accurate results.

Figure 23.35: Example of nonlinear phase of a filter in the stopband

23.129.1 Inputs

Signal name Type Description

Phase Analog Input waveform

23.129.2 Parameters

Parameter name Type Description

Ref Freq Low Float Lower reference frequency

Ref Freq High Float Upper reference frequency

23.129.3 Output Signal

This filter outputs an analog waveform with one sample for each sample in the input, containing
the deviation from linear phase.

23.130. PRBS 241

23.130 PRBS

Generates a pseudorandom bit sequence, and double rate bit clock, with a specified bit rate from a
list of standard polynomials.

242 CHAPTER 23. FILTERS

23.131 Pulse Width

This filter measures the length and amplitude of pulses and outputs that as a waveform. It auto-
thresholds analog inputs at 50%.

Figure 23.36: Example of pulse width measurement of a clipped sinewave input waveform.

23.131.1 Inputs

Signal name Type Description

din Analog Input waveform

23.131.2 Output Signal

This filter outputs two output waveforms. One is a sparse analog waveform with the same timebase
as the input, containing one sample per pulse with a duration and value equal to the length of the
pulse. Other is a similar sparse analog waveform, but its values are equal to the amplitude of the
pulses. In case, the input is uniform or sparse digital, this second output waveform is uniform or
sparse digital respectively instead of analog.

23.132. QSPI 243
23.132 QSPI

Quad SPI as used in serial Flash. Note that this filter only decodes quad mode streams, not x1
SPI.

244 CHAPTER 23. FILTERS

23.133 Quadrature

Quadrature pulses from a rotary encoder

23.134. REFERENCE PLANE EXTENSION 245
23.134 Reference Plane Extension

Given a set of S-parameters, shifts the reference plane on one or two ports and outputs a new set
of S-parameters.

246 CHAPTER 23. FILTERS
23.135 Rj + BU;j

Removes data-dependent jitter (DDJ) from a TIE waveform, leaving uncorrelated jitter (Rj and
BUj).

23.136. RMS 247

23.136 RMS

Measures the Root Mean Square value of the waveform, including any DC component

23.136.1 Inputs

Signal name Type Description

din Analog Input waveform

23.136.2 Parameters

This filter takes no parameters.

23.136.3 Output Signal

This filter has two output streams.

Stream name Type Description

trend Sparse analog One sample per cycle of the input waveform containing the
RMS value across that cycle

avg Scalar RMS value across the entire waveform

248 CHAPTER 23. FILTERS

23.137 Rise

Calculates the rise time for each cycle of a waveform

23.138. S-PARAMETER CASCADE 249
23.138 S-Parameter Cascade

Cascades two two-port networks and outputs a two-port network equivalent to the two input net-
works in series.

250 CHAPTER 23. FILTERS

23.139 S-Parameter De-Embed

Given a two port network equal to the cascade of two others, plus S-parameters for one of the two
sub-networks, output S-parameters for the other.

23.140. SCALAR PULSE DELAY 251

23.140 Scalar Pulse Delay

Delays a scalar pulse by approximately the specified real time.

This filter is intended for use in control or test applications to trigger a measurement after an
experimental setup has had time to stabilize.

252 CHAPTER 23. FILTERS

23.141 Scalar Stairstep

Outputs a scalar value which ramps from a starting value to an ending value in a stairstep pattern,
with configurable step duration and spacing.

23.142. SCALE 253

23.142 Scale

Multiplies a waveform by a scalar.

254 CHAPTER 23. FILTERS

23.143 SD Card Command

Decodes the Secure Digital card command bus protocol

23.144. SINE 255

23.144 Sine

Generates a pure sine wave with specified frequency, amplitude, sample rate, and DC bias.

256 CHAPTER 23. FILTERS

23.145 SNR

Computes simple g (mean over standard deviation) signal-to-noise ratio for the input signal.

23.145.1 Inputs

Signal name Type Description

in Analog Input Waveform

23.145.2 Parameters

This filter takes no parameters.

23.145.3 Output Signal

This filter outputs a scalar value representing the g SNR for the whole waveform. For sparse
waveforms samples are weighted by length and gaps are not considered.

23.146. SPECTROGRAM 257
23.146 Spectrogram

Displays a 2D plot of frequency vs time using configurable FFT length.

258 CHAPTER 23. FILTERS

23.147 SPI

Serial Peripheral Interface.

23.148. SPI FLASH 259

23.148 SPI Flash

Flash memory attached to a SPI or quad SPI bus. Typically these chips have part numbers that
start with “25".

260 CHAPTER 23. FILTERS
23.149 Squelch

Detects periods with no signal.

23.150. STEP 261

23.150 Step

Generates a single step from one voltage level to another. Typically used for measuring step response
of a channel or doing TDR transforms on S-parameters.

262 CHAPTER 23. FILTERS

23.151 Swubtract

Subtracts one waveform from another. No resampling is performed; both inputs must have identical
sample rates.

23.151.1 Inputs

Signal name Type Description

IN+ Analog Positive input waveform

IN- Analog Negative input waveform

23.151.2 Parameters

This filter takes no parameters.

23.151.3 Owutput Signal

This filter outputs an analog waveform with one sample for each sample in the input, containing
the difference of the two input waveforms.

23.152. SWD 263

23.152 SWD

The Serial Wire Debug protocol between a Debug Probe and an ARM Microcontroller, typically
from the CORTEX-M family. This decode recognises all SWD frame elements and validates type
and parity of both incoming and outgoing messages. It also identifies line resets and line protocol
change messages.

The SWD Protocol defines that the target will read and write on the rising edge of SWCLK. It
does not place any constraint on when the probe reads and writes. For the purposes of graphical
depiction each protocol element starts at a falling edge and continues to be valid until the next
falling edge, following the graphical convention established in the ARM documentation.

Reference: ARM Debug Interface v5 Architecture Specification, Chapter 4.

w Reg 04 OK X STOP X PARK X TURN

Figure 23.37: Example of SWD protocol decode

23.152.1 Inputs

Signal name Type Description

SWDIO Digital ~Serial Wire Data In/Out (To/From target)
SWCLK Digital Serial Wire Clock In (To Target from Debug Probe)

23.152.2 Parameters

No parameters are required for configuration of SWD. The protocol is clocked by SWCLK.

23.152.3 Output Signal

The SWD bus decode outputs a time series of SWD message elements, each of which may be one
or a number of bits long. Each message element consist of a type and optional numeric content.

264

CHAPTER 23. FILTERS
Type Description Color Format
Line Control Line Reset LINE RESET
Line Mode Line Mode Change to SWD JTAG TO SWD
Line Mode Line Mode Change to JTAG SWD TO JTAG
Line Mode Line Mode Change to Dormant SWD TO DORMANT
Line Mode Leave Dormant Mode LEAVE DORMANT
Start Start of frame START
APnDP Selection between AP and DP AP|DP
RnW Read or Write mode R|W
ADDR AP or DP Address Address Reg %02x
Parity Good Header Parity _ OK
Parity Bad Header Parity BAD
Stop End of Header STOP
Park Line Release PARK
Turnaround Line Direction Change TURN
Acknowledge Good Response from target to request ACK|WAIT
Acknowledge Bad Response from target to request FAULT|ERROR
Data Payload to/From Target %08x

23.153. SWD MEM-AP 265

23.153 SWD MEM-AP

Converts SWD accesses to MEM-AP registers into memory read-write transactions.

Reference: ARM Debug Interface v5 Architecture Specification, chapter 8.

266 CHAPTER 23. FILTERS

23.154 Tachometer

Converts pulses from a tachometer to shaft speed

23.155. TAPPED DELAY LINE 267
23.155 Tapped Delay Line

Generic FIR filter with arbitrary tap values and delays. Can be used as-is for testing FIR filter
coefficients calculated by hand, but most commonly used as a base class for more specialized filters.

268 CHAPTER 23. FILTERS

23.156 TCP

Decodes the Transmission Control Protocol (RFC 675). As of this writing, only IPv4 is supported as
a network layer protocol. IPv6 support is planned once an IPv6 protocol decode has been written.

23.157. TDR 269

23.157 TDR

Converts a TDR waveform from volts to reflection coefficient or impedance.

270

23.158 Time Outside Level

CHAPTER 23. FILTERS

Measures the total integrated time a signal remains above a high reference level or below a low

reference level or both.

Sine : 2 kS|
100 GS/s

Time Outside Level

Maximum 10
Average 10
Minimum 10

Figure 23.38: Example of time outside high level measurement with a high level threshold of OmV

23.158.1 Inputs

Signal name Type Description

din Analog Input waveform

23.158.2 Parameters

Parameter name Type Description

High Level Float High level reference voltage

Low Level Float Low level reference voltage

Measurement Type Enum High Level: Measure the total time the signal is above high

level reference voltage

Low Level: Measure the total time the signal is below low level

reference voltage

Both: Measure the total time the signal is both above and
below high level and low level reference voltages respectively

23.159. THERMAL DIODE 271

23.159 Thermal Diode

Converts an analog voltage measurement of a thermal diode to a temperature value

272 CHAPTER 23. FILTERS

23.160 Threshold

Converts an analog waveform to digital by thresholding at a constant level (no hysteresis).

23.160.1 Inputs

Signal name Type Description

din Analog Input waveform

23.160.2 Parameters

Parameter name Type Description

Threshold Float Decision threshold

23.160.3 Owutput Signal

This filter outputs an digital waveform with one sample for each sample in the input, which is true
if the corresponding input sample is above the threshold and false if less than or equal.

23.161. TIE 273
23.161 TIE

Calculates the time interval error of a data or clock signal with respect to an ideal “golden" clock
(typically obtained from a CDR PLL).

274 CHAPTER 23. FILTERS

23.162 Top

Calculates the top (logical one level) of each cycle in a digital waveform. It is most commonly used
as an input to statistics, to view the average top of the entire waveform.

23.162.1 Inputs

Signal name Type Description

din Analog Input waveform

23.162.2 Parameters

This filter takes no parameters.

23.162.3 Output Signal

This filter outputs an analog waveform with one sample for each group of logical ones in the input
signal, containing the average value of the one level.

23.163. TOUCHSTONE EXPORT 275
23.163 Touchstone Export

Saves S-parameter data to a Touchstone file.

276 CHAPTER 23. FILTERS
23.164 Touchstone Import

Loads a Touchstone file and displays the complex data in magnitude/angle format

23.165. TREND 277

23.165 Trend

Plots a trend of a scalar value over time

278 CHAPTER 23. FILTERS
23.166 TRC Import

Loads waveform data from a Teledyne LeCroy TRC waveform file.

23.167. UART 279

23.167 UART

280 CHAPTER 23. FILTERS

23.168 Unwrapped Phase

Given a phase angle waveform which wraps within the interval [-180°+180°], unwrap the phase
angle.

-5 GHz -2.5 GHz 0 mHz 2.5 GHz 5 GHz 7.5 GHz 10 GHz 12.5 GHz 15 GHz 17.5 GHz 20 GHz 22.5 GHz 25 GHz 27.5 GHz 30 G

AR AN
RS

| 32K243-40MLS5 Microstrip.s2p.521_ang

UnwrappedPhase 12(32K243-40MLS Microstri 1 ang)

Figure 23.39: Example of wrapped and unwrapped phase of a transmission line

23.168.1 Inputs

Signal name Type Description

Phase Analog Input waveform

23.168.2 Parameters

This filter takes no parameters.

23.168.3 Output Signal

This filter outputs an analog waveform with one sample for each sample in the input, containing
the unwrapped phase angle.

23.169. USB 1.0 / 2.X ACTIVITY 281

23.169 USB 1.0 / 2.x Activity

282 CHAPTER 23. FILTERS

23.170 USB 1.0 / 2.x Packet

23.171. USB 1.0 / 2.X PCS 283

23.171 USB 1.0 / 2.x PCS

284 CHAPTER 23. FILTERS

23.172 USB 1.0 / 2.x PMA

23.173. UNDERSHOOT 285

23.173 Undershoot

286 CHAPTER 23. FILTERS

23.174 Upsample

Upsamples a waveform using sin(x)/x interpolation.

23.175. VCD IMPORT 287
23.175 VCD Import

Loads digital waveform data from a Value Change Dump (VCD) file.

288 CHAPTER 23. FILTERS

23.176 Vector Frequency

Calculates the instantaneous frequency (rotational velocity) of a complex I/Q signal.

23.177. VECTOR PHASE 289

23.177 Vector Phase

Calculates the instantaneous phase of a complex I/Q signal.

290 CHAPTER 23. FILTERS

23.178 Vertical Bathtub

23.179. VICP 291
23.179 VICP

Decodes the Teledyne LeCroy Virtual Instrument Control Protocol (VICP)

292 CHAPTER 23. FILTERS

23.180 Waterfall

23.181. WAV IMPORT 293
23.181 WAYV Import

Loads waveform data from a Microsoft WAV audio file.

294 CHAPTER 23. FILTERS
23.182 WFM Import

Loads waveform data from a Tektronix .wim file.

23.183. WINDOWED AUTOCORRELATION 295
23.183 Windowed Autocorrelation

Calculates the cross-correlation between a fixed size block of the input signal and another block of
the same size.

This will produce maximal response for a signal which has periodicity with the specified period
and block size.

For example, period 4 and block size 2 will match aa**aa**,

This can be used to identify OFDM symbols.

296 CHAPTER 23. FILTERS

23.184 Window

Selects a temporal subset of an input waveform. Useful for running intensive analyses only on a
region of interest. Start and end times are rounded to the sample that starts at or nearest after the
given time.

23.184.1 Inputs

Signal name Type Description

din Analog or Digital Input waveform

23.184.2 Parameters

Parameter name Type Description

Start Time Float Start of selected window

Duration Float Length of selected window

23.184.3 Output Signal

This filter outputs a subset of the input signal. If the input is sparse, so is the output and vice
versa. No samples are added.

23.185. X-Y SWEEP 297
23.185 X-Y Sweep

This filter converts a sweeping X scalar value and a corresponding Y scalar value into a waveform
plotting X against Y.

Note that this filter assumes that the X value is sweeping in an upwards ramp, and is not
intended for use with arbitrary X-Y data. In particular, the output is a standard sparse waveform
type rather than an X-Y density map.

	Introduction
	Introduction
	Documentation Conventions
	Key Concepts
	User Interface
	Design Philosophy
	Terminology

	Revision History

	Legal Notices
	Introduction
	License Agreement
	Trademarks
	Third Party Licenses
	avx_mathfun.h (zlib license)

	Getting Started
	Host System Requirements
	Instrument Support
	Compilation
	Linux
	macOS
	Windows

	Running ngscopeclient
	Console verbosity arguments

	Main Window
	Menu
	File
	View
	Add
	Setup
	Window
	Debug
	Help

	Dialogs
	Lab Notes
	Log Viewer
	Performance Metrics
	Rendering
	Filter graph
	Acquisition
	Memory

	Preferences
	Appearance
	Drivers
	Files
	Miscellaneous
	Power

	Speed Bump
	Timebase

	Waveform Groups
	Managing Groups

	Waveform Views
	Navigation
	Plot Area
	Y Axis Scale
	Channel Label
	Cursors and Markers
	Vertical Cursors
	Markers

	History
	Pinning
	Labeling

	Filter Graph Editor
	Introduction
	Interaction
	Grouping

	Transports
	gpib
	lan
	lxi
	null
	socketcan
	twinlan
	uart
	usbtmc
	vicp

	BERT Drivers
	MultiLANE
	mlbert

	Function Generator Drivers
	Rigol
	rigol_awg

	Electronic Load Drivers
	Siglent
	siglent_load

	Multimeter Drivers
	Rohde & Schwarz
	rs_hmc8012

	Miscellaneous Drivers
	Generic
	csvstream

	Oscilloscope Drivers
	Agilent
	agilent

	Antikernel Labs
	akila
	aklabs

	Demo
	Digilent
	digilent

	DreamSource Lab
	dslabs

	EEVengers
	Enjoy Digital
	Generic
	socketcan

	Hantek
	Keysight
	agilent
	keysightdca

	Pico Technologies
	pico

	Rigol
	rigol

	Rohde & Schwarz
	rs
	rs_rto6

	Saleae
	Siglent
	Teledyne LeCroy / LeCroy
	lecroy
	lecroy_fwp

	Tektronix
	Note regarding ``lan" transport on MSO5/6

	Xilinx

	SDR Drivers
	Ettus Research
	uhd

	Microphase

	Spectrometer Drivers
	ASEQ Instruments
	aseq

	Power Supply Drivers
	GW Instek
	gwinstek_gpdx303s

	Rigol
	rigol_dp8xx

	Rohde & Schwarz
	rs_hmc804x

	Siglent
	siglent_spd

	RF Generator Drivers
	Siglent
	siglent_ssg

	VNA Drivers
	Copper Mountain
	coppermt

	Pico Technology
	picovna

	Triggers
	Trigger Properties
	Serial Pattern Triggers
	Dropout
	Inputs
	Parameters

	Edge
	Inputs
	Parameters

	Glitch
	Pulse Width
	Parameters

	Runt
	Parameters

	Slew Rate
	Parameters

	UART
	Inputs
	Parameters

	Window
	Parameters

	Filters
	Introduction
	Key Concepts
	Conventions

	128b/130b
	Inputs
	Parameters
	Output Signal

	64b/66b
	Inputs
	Parameters
	Output Signal

	8B/10B (IBM)
	Inputs
	Parameters
	Output Signal

	8B/10B (TMDS)
	Inputs
	Parameters
	Output Signal

	AC Couple
	Inputs
	Parameters
	Output Signal

	AC RMS
	Inputs
	Parameters
	Output Signal

	Add
	Inputs
	Parameters
	Output Signal

	Area Under Curve
	Inputs
	Parameters
	Output Signal

	ADL5205
	Inputs
	Parameters
	Output Signal

	Autocorrelation
	Inputs
	Parameters
	Output Signal

	Average
	Inputs
	Parameters
	Output Signal

	Bandwidth
	Inputs
	Parameters
	Output Signal

	Base
	Inputs
	Parameters
	Output Signal

	BIN Import
	Inputs
	Parameters
	Output Signal

	Burst Width
	Inputs
	Parameters
	Output Signal

	Bus Heatmap
	Parameters
	Output Signal

	CAN
	Inputs
	Parameters
	Output Signal
	Protocol Analyzer

	CAN Analyzer
	CAN Bitmask
	Can-Utils Import
	Channel Emulation
	Inputs
	Parameters
	Output Signal

	Clip
	Inputs
	Parameters
	Output Signal

	Clock Recovery (D-PHY HS Mode)
	Clock Recovery (PLL)
	Inputs
	Parameters
	Output Signal

	Clock Recovery (UART)
	Inputs
	Parameters
	Output Signal

	Complex Import
	Inputs
	Parameters
	Output Signal

	Complex Spectrogram
	Constant
	Inputs
	Parameters
	Output Signal

	Constellation
	Coupler De-Embed
	Inputs

	CSV Export
	Inputs
	Parameters
	Output Signal

	CSV Import
	Current Shunt
	DDJ
	Inputs
	Parameters
	Output Signal

	DDR1 Command Bus
	DDR3 Command Bus
	De-Embed
	Inputs
	Parameters
	Output Signal

	Deskew
	Inputs
	Parameters
	Output Signal

	Digital to NRZ
	Inputs
	Parameters
	Output Signal

	Digital to PAM4
	Inputs
	Parameters
	Output Signal

	DisplayPort - Aux Channel
	Divide
	Downconvert
	Downsample
	DRAM Clocks
	DRAM Trcd
	DRAM Trfc
	Duty Cycle
	DVI
	Emphasis
	Emphasis Removal
	Enhanced Resolution
	Inputs
	Parameters

	Envelope
	Ethernet - 10baseT
	Ethernet - 100baseT1
	Ethernet - 100baseT1 Link Training
	Ethernet - 100baseTX
	Ethernet - 1000baseX
	Parameters
	Output Signal

	Ethernet - 10Gbase-R
	Ethernet - GMII
	Ethernet - QSGMII
	Ethernet - RGMII
	Ethernet - RMII
	Ethernet - SGMII
	Ethernet Autonegotiation
	Ethernet Autonegotiation Page
	Ethernet Base-X Autonegotiation
	Exponential Moving Average
	Inputs
	Parameters

	Eye Bit Rate
	Eye Height
	Eye P-P Jitter
	Eye Pattern
	Eye Period
	Eye Width
	Fall
	FFT
	FIR
	Frequency
	FSK
	Full Width at Half Maximum
	Inputs
	Parameters
	Output Signal

	Gate
	Glitch Removal
	Inputs
	Parameters
	Output Signal

	Group Delay
	Inputs
	Parameters
	Output Signal

	Histogram
	Inputs
	Parameters
	Output Signal

	Horizontal Bathtub
	HDMI
	I2C
	I2C EEPROM
	I2C Register
	IBIS Driver
	Inputs
	Parameters
	Output Signal

	Invert
	Intel eSPI
	IPv4
	IQ Demux
	IQ Squelch
	Jitter
	Inputs
	Parameters
	Output Signal

	Jitter Spectrum
	JTAG
	Magnitude
	Maximum
	Inputs
	Parameters
	Output Signal

	MDIO
	Memory
	MIL-STD-1553
	Minimum
	Inputs
	Parameters
	Output Signal

	MIPI D-Phy Data
	MIPI D-Phy Escape Mode
	MIPI D-Phy Symbol
	MIPI DSI Frame
	MIPI DSI Packet
	Moving Average
	Multiply
	Noise
	Overshoot
	PAM4 Demodulator
	PAM Edge Detector
	Parallel Bus
	PcapNG Import
	PCIe Data Link
	PCIe Gen 1/2 Logical
	PCIe Gen 3/4/5 Logical
	PCIe Link Training
	PCIe Transport
	Peak Hold
	Peak-to-Peak
	Peaks
	Period
	Phase
	Phase Nonlinearity
	Inputs
	Parameters
	Output Signal

	PRBS
	Pulse Width
	Inputs
	Output Signal

	QSPI
	Quadrature
	Reference Plane Extension
	Rj + BUj
	RMS
	Inputs
	Parameters
	Output Signal

	Rise
	S-Parameter Cascade
	S-Parameter De-Embed
	Scalar Pulse Delay
	Scalar Stairstep
	Scale
	SD Card Command
	Sine
	SNR
	Inputs
	Parameters
	Output Signal

	Spectrogram
	SPI
	SPI Flash
	Squelch
	Step
	Subtract
	Inputs
	Parameters
	Output Signal

	SWD
	Inputs
	Parameters
	Output Signal

	SWD MEM-AP
	Tachometer
	Tapped Delay Line
	TCP
	TDR
	Time Outside Level
	Inputs
	Parameters

	Thermal Diode
	Threshold
	Inputs
	Parameters
	Output Signal

	TIE
	Top
	Inputs
	Parameters
	Output Signal

	Touchstone Export
	Touchstone Import
	Trend
	TRC Import
	UART
	Unwrapped Phase
	Inputs
	Parameters
	Output Signal

	USB 1.0 / 2.x Activity
	USB 1.0 / 2.x Packet
	USB 1.0 / 2.x PCS
	USB 1.0 / 2.x PMA
	Undershoot
	Upsample
	VCD Import
	Vector Frequency
	Vector Phase
	Vertical Bathtub
	VICP
	Waterfall
	WAV Import
	WFM Import
	Windowed Autocorrelation
	Window
	Inputs
	Parameters
	Output Signal

	X-Y Sweep

